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6. Conclusions & Future Work
Conclusions:
- Experimental integration of fence.t into OpenC910
- New challenges due to out-of-order pipeline and mixed state
- Reuse custom extensions of OpenC910 for minimal hardware modifications
- Preliminary results suggest that fence.t is effective

Future work:
- Port modified system to FPGA
- Run timing channel benchmarks in presence of OS

1. Timing Channels
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General Concept:
- Applications compete for shared hardware resources
- Levarage timing interferences to transfer

information, bypassing security boundaries.

Example:
- Trojan: utilise cache depending on secret
- Spy: measure execution time.
- Spy’s measured execution time

depends on Trojan’s cache utilisation
depends on secret.

Prevention:
- Let OS partition all shared hardware resources [1].
- Spatial partitioning: divide hardware resource and allocate different parts.
- Temporal partitioning: flush hardware resource when switching between applications [2].

2. OpenC910
Overview:
- T-Head XuanTie OpenC910
- Open-sourced by T-Head Semiconductor Co., Ltd.

in 2021 under the Apache License [3].
- Implements RV64GCXtheadc ISA.
- 12-stage, out-of-order (OoO), superscalar pipeline.
- 32 KiB / 64 KiB L1 cache, SV39-MMU with 2048-entry TLB. 

Xtheadc Extension (Selection):
sync.i instruction:   instruction stream synchronisation.
         Serves as a barrier in the instruction stream.
dcache.call instruction: data cache clear all
         Clears the L1 data cache, writing back all dirty cache lines.
mrvbr CSR:      machine mode reset vector base address register.
         Holds the address from which the core starts execution
         after coming out of reset.

3. Mixed State
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Problem:
Clearing microarchitectural state (renamer) causes loss of architectural state!

Solution:
Save architectural registers onto stack. Clear renamer and physical register file on fence.t.

5. Preliminary Results
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4. fence.t in OpenC910
fence.t:
Temporal fence instruction that flushes on-core microarchitectural state for full temporal
partitioning [1].
Experimental integration into OpenC910 where it clears all on-core state (except for CSRs).

Step 1: Save context.
  Save the stack pointer (sp) at a known location that is not affected by fence.t,
  e.g. the mscratch CSR. Write the architectural registers onto the stack.

Step 2: Define reset vector.
  Write the address of the instruction following fence.t into the mrvbr CSR. Execution
  after fence.t will resume from here.

Step 3: Clear the L1 data cache.
  Execute dcache.call to write back dirty cache lines.

Step 4: Execute fence.t.
  This resets the entire core except for the CSR files. We guard the fence.t instruction
  by sync.i instructions to ensure that all previous steps have beem completed.

Step 5: Restore context. 
  Restore the stack pointer and load the architectural registers from the stack.
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