
References
[1] Qian Ge, Yuval Yarom, and Gernot Heiser. “No Security Without Time Protection: We Need a New Hardware-
 Software Contract”. In: APSys’18. ACM, 2018, 1:1–1:9. doi: 10.1145/3265723.3265724.
[2] Nils Wistoff, Moritz Schneider, Frank K. Gürkaynak, Gernot Heiser, and Luca Benini.. “Systematic
 Prevention of On-Core Timing Channels by Full Temporal Partitioning”.In: IEEE Trans. Comput.
 72.5 (2023), pp. 1420–1430. doi: 10.1109/TC.2022.3212636.
[3] T-Head Semiconductor Co., Ltd. OpenC910 Core. 2021.
 url: https://github.com/T-head-Semi/openc910.
[4] Mathieu Escouteloup, Ronan Lashermes, Jacques Fournier, and Jean-Louis Lanet.
 “Under the dome: preventing hardware timing information leakage”. In: CARDIS’21.
 Nov. 2021, pp. 1–20. url: https://hal.archives- ouvertes.fr/hal- 03351957.

PULP
Parallel Ultra Low Power

P

P

Towards Full Time Protection of an
Open-Source, Out-of-Order RISC-V Core
Nils Wistoff1, Gernot Heiser2, Luca Benini1,3

1ETH Zürich, 2UNSW Sydney, 3University of Bologna

6. Conclusions & Future Work
Conclusions:
- Experimental integration of fence.t into OpenC910
- New challenges due to out-of-order pipeline and mixed state
- Reuse custom extensions of OpenC910 for minimal hardware modifications
- Preliminary results suggest that fence.t is effective

Future work:
- Port modified system to FPGA
- Run timing channel benchmarks in presence of OS

1. Timing Channels

secret s

Spy

security
boundary

Supervisor (OS)

Hardware

Microarchitectural State

Indirectly modify
depending on

secret

Measure
execution

time

Application A Application B

General Concept:
- Applications compete for shared hardware resources
- Levarage timing interferences to transfer

information, bypassing security boundaries.

Example:
- Trojan: utilise cache depending on secret
- Spy: measure execution time.
- Spy’s measured execution time

depends on Trojan’s cache utilisation
depends on secret.

Prevention:
- Let OS partition all shared hardware resources [1].
- Spatial partitioning: divide hardware resource and allocate different parts.
- Temporal partitioning: flush hardware resource when switching between applications [2].

2. OpenC910
Overview:
- T-Head XuanTie OpenC910
- Open-sourced by T-Head Semiconductor Co., Ltd.

in 2021 under the Apache License [3].
- Implements RV64GCXtheadc ISA.
- 12-stage, out-of-order (OoO), superscalar pipeline.
- 32 KiB / 64 KiB L1 cache, SV39-MMU with 2048-entry TLB.

Xtheadc Extension (Selection):
sync.i instruction: instruction stream synchronisation.
 Serves as a barrier in the instruction stream.
dcache.call instruction: data cache clear all
 Clears the L1 data cache, writing back all dirty cache lines.
mrvbr CSR: machine mode reset vector base address register.
 Holds the address from which the core starts execution
 after coming out of reset.

3. Mixed State

x1 p4

x2 p2

x3 p0

x4 p5

p0 [x3]

p1

p2 [x2]

p3

p4 [x1]

p5 [x4]

Register Renamer Physical Register File

Microarchitectural state

Architectural state
Problem:
Clearing microarchitectural state (renamer) causes loss of architectural state!

Solution:
Save architectural registers onto stack. Clear renamer and physical register file on fence.t.

5. Preliminary Results

0 8 16 24 31
Trojan value

0

8

16

24

31

Sp
y

va
lu

e

0 8 16 24 31
Trojan value

24

42

Cy
cl

es

Unmitigated With fence.t- Preliminary evaluation
using bare-metal
timesec-bench [4]

- Runs prime-and-probe
attack on L1 data cache

- Changes along a horizontal
cut indicate timing channel

Channel!

No channel

4. fence.t in OpenC910
fence.t:
Temporal fence instruction that flushes on-core microarchitectural state for full temporal
partitioning [1].
Experimental integration into OpenC910 where it clears all on-core state (except for CSRs).

Step 1: Save context.
 Save the stack pointer (sp) at a known location that is not affected by fence.t,
 e.g. the mscratch CSR. Write the architectural registers onto the stack.

Step 2: Define reset vector.
 Write the address of the instruction following fence.t into the mrvbr CSR. Execution
 after fence.t will resume from here.

Step 3: Clear the L1 data cache.
 Execute dcache.call to write back dirty cache lines.

Step 4: Execute fence.t.
 This resets the entire core except for the CSR files. We guard the fence.t instruction
 by sync.i instructions to ensure that all previous steps have beem completed.

Step 5: Restore context.
 Restore the stack pointer and load the architectural registers from the stack.

e-mail: nwistoff@iis.ee.ethz.ch

