
Accelerating Irregular Workloads with
Cooperating Indexed Stream Registers

Paul Scheffler1∗, Luca Benini1,2

1Integrated Systems Laboratory, ETH Zurich
2Department of Electrical, Electronic, and Information Engineering, University of Bologna

Abstract

Sparse and irregular workloads are crucial to various data-driven applications including computational physics,
graph analytics, and sparse neural networks. However, their high control overhead and irregular memory access
patterns are inefficiently handled by today’s architectures, resulting in low functional unit utilization and low
overall efficiency. While proposed hardware solutions accelerate irregular workloads, most are held back by a lack
of generality or their large architectural impact. We present Cooperating Indexed Stream Registers, a lightweight
RISC-V ISA extension building on stream registers to accelerate three key operational patterns on index streams
underlying many irregular workloads: indirection, intersection, and union. Handling these in hardware can
accelerate one- and two-sided sparse linear algebra, stencil workloads, sparse neural networks, and quantized
data streaming among others. In an existing eight-core RISC-V compute cluster, our extensions incur only 1.8%
in additional area over affine stream registers, but accelerate sparse-dense linear algebra, sparse-sparse linear
algebra, and stencil codes by up to 5.0x, 5.9x, and 3.7x, respectively while consuming up to 3.0x less energy.

Introduction

Large-scale data-driven applications like sparse ma-
chine learning (ML), graph analytics, and computa-
tional physics are shifting computer architects’ atten-
tion toward irregular workloads, which exhibit high
control overhead and data-dependent memory accesses.
However, today’s processors are tuned for regular com-
pute: even TOP500 systems achieve only tiny fractions
of their peak compute on irregular workloads [1].

Many hardware proposals accelerate irregular work-
loads, but lack generality or incur significant hardware
overheads. Vector processors accelerate indirection
with scatter-gather, but require registered indices, lim-
ited vector lengths, and cannot accelerate operations
between two sparse operands. Recent GPU extensions
target sparse operations, but only efficiently handle
low (structured or bitmapped) sparsity in either one
[2] or both operands [3]. Some accelerators target gen-
eral sparse linear algebra (LA) [4], but impose large
area impacts, loose coupling, or restrictive dataflows.

One promising acceleration approach are stream
registers (SRs), which map memory streams to archi-
tectural registers. We present Cooperating Indexed
Stream Registers (CISRs) [5], a lightweight RISC-V
ISA extension accelerating general irregular workloads;
this includes one- and two-sided sparse LA, but also
non-LA workloads like stencils, sparse convolution,
and quantized streaming. CISRs extend an existing
SR design targeting regular workloads [6] to accelerate
three operations on index streams underlying many ir-
regular workloads: indirection, intersection and union.
CISRs are lightweight and modular, reusing existing
∗Corresponding author: paulsc@iis.ee.ethz.ch

datapaths where possible and incurring only 1.8% in
additional area in an eight-core RISC-V compute clus-
ter [7] with affine SRs. In multicore workloads, CISRs
enable speedups of up to 5.0×, 5.9×, and 3.7× over an
RV32G baseline on sparse-dense LA, sparse-sparse LA,
and stencils, respectively, enabling FPU utilizations
of up to 93% and consuming up to 3.0× less energy.

Architecture

We keep the existing SRs’ interfaces [6]: streams are set
up through custom instructions and SRs autonomously
stream data to or from memory. Accesses to mapped
registers implicitly push or pop streams, enabling con-
tinuous streaming even in single-issue in-order cores.

We add streaming indirection capabilities to our
baseline SR, creating the indexed stream register (ISR)
shown in Fig. 1a. We extend the address generator
to fetch index arrays from memory, add them to a
configured base pointer, and use the resulting addresses
for indirect read (gather) or write (scatter) requests.
This is similar to RVV indexed accesses, but we fetch
indices directly from memory where they originate
in data-dependent workloads, enabling near-memory
index processing and much longer continuous streams.

We support 8, 16, 32, and 64 b indices, as well as a
programmable shift enabling indirection into higher-
level data axes or struct arrays. We fetch indices in
packets utilizing the memory bus’ full width. Indices
and data share a single memory port, slightly reducing
peak throughput to preserve memory topology. We re-
tain the base SR’s affine streaming capabilities, which
we reuse to generate addresses for the fetched indices.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:paulsc@iis.ee.ethz.ch


ISR indices data

to
 r

e
g

a
ffi

n
e
 g

e
n

.

+

ser.
<<

cfg
ba

se

sh
ift a

d
d
r

d
a
ta

to memory

(a) Indexed SR

ISR1

ISR0
idx

cmp

ESR

to memory

fu
n
c.

 u
n
it

(b) Cooperating ISRs

Figure 1: Architecture of CISR extension components.

To handle operations between sparse operands, two
or three of our SRs cooperate, which we then call CISRs.
For this, we assume that as in common sparse tensor
formats like CSR or CSF, operands are composed
of sparse vectors encoded as two arrays, one storing
ordered nonzero values and one storing their indices.

For multiplicative operations, we form the inter-
section of operand indices to find value pairs that
influence the result, while additive operations require
forming their union. We do this by adding an index
comparator between two ISRs as shown in Fig. 1b.
Each ISR reuses its existing datapath to stream the
indices of one operand. The comparator advances
whichever index stream has the smaller current index.

When intersecting, the ISRs fetch the current index’
value only if both indices match, avoiding redundant
accesses. During union, if an index occurs only in one
operand, the opposite ISR emits a neutral additive
element (0). In both cases, the we can continuously
issue useful instructions using the SRs without control
overhead; the comparator informs our branch unit or
hardware loop when a joint stream ends. For element-
wise operations, the joint indices may be read by a
third egress SR (ESR) writing them out alongside
register-written values as a sparse result vector.

Results

CISRs are highly versatile. In addition to many work-
loads leveraging sparse-dense or sparse-sparse LA, they
can accelerate any scatter-gather task and stream ar-
bitrary memory sequences to or from registers. This
enables workloads with irregular, but repeated access
patterns like stencils or sparse convolution to achieve
near-full FPU utilization. They can also stream com-
pressed high-precision data encoded as compact indices
indexing a lookup table. Through intersection, they
can even accelerate graph pattern matching.

We evaluate CISRs by integrating them in each of
the eight cores of the RV32 Snitch compute cluster
[7]. We replace the previously included three affine
SRs [6], which stream between the internal 64-bit-wide
tightly-coupled scratchpad and registers ft0 to ft2.

In GlobalFoundries’ 12LP+ technology, each ISR
incurs only 10 kGE in area, 3 kGE more than an affine

sM×dV sV×sV sV+sV sM×dV sM×sV stencils
0
2
4
6
8

10

Sp
ee

du
p

single core
8-core cluster

Figure 2: Peak CISR single core and cluster speedups.

SR. A CISR team with an ESR incurs only 11 kGE

more per core than affine SRs, resulting in only 1.8%

of additional cluster area and no clock speed impact.
Figure 2 shows peak workload speedups enabled

by CISRs over an RV32G baseline. On a single core,
CISR indirection enables sparse-dense LA speedups of
up to 7.0× and FPU utilizations of up to 79%, while
intersection and union enable sparse-sparse multiply
and add speedups of up to 7.7× and 9.8×, respectively.
In an eight-core cluster, CISRs enable sparse-dense
matrix-vector multiply (M×V) speedups of up to 5.0×
and use up to 2.9× less energy. Sparse-sparse M×V
is up to 5.9× faster and uses up to 3.0× less energy.
Selected cluster stencil kernels are up to 3.7× faster
and achieve FPU utilizations of up to 93%.

Conclusion

We present CISRs, a lightweight RISC-V SR extension
accelerating general irregular workloads. By extending
an SR architecture with hardware indirection, intersec-
tion, and union, we create a highly versatile extension
enabling multicore speedups of up to 5.9× and energy
savings of up to 3.0× over a RV32G baseline. We hope
that CISRs can provide a first step toward formal
RISC-V SR and irregular workload ISA extensions.

References

[1] June 2022 HPCG Results. https://www.hpcg-benchmark.
org/custom/index.html%3Flid=155&slid=313.html.

[2] Nvidia. NVIDIA A100 Tensor Core GPU Architecture.

[3] Yang Wang et al. “Dual-side Sparse Tensor Core”. In: 2021
ACM/IEEE ISCA 48. 2021, pp. 1083–1095.

[4] Shail Dave et al. “Hardware Acceleration of Sparse and
Irregular Tensor Computations of ML Models: A Survey
and Insights”. In: Proc. IEEE 109 (2021), pp. 1706–1752.

[5] Paul Scheffler et al. “Sparse Stream Semantic Registers: A
Lightweight ISA Extension Accelerating General Sparse
Linear Algebra”. Not yet published.

[6] Fabian Schuiki et al. “Stream Semantic Registers: A
Lightweight RISC-V ISA Extension Achieving Full Com-
pute Utilization in Single-Issue Cores”. In: IEEE Trans.
Comput. 70 (2021), pp. 212–227.

[7] Florian Zaruba et al. “Snitch: A Tiny Pseudo Dual-Issue
Processor for Area and Energy Efficient Execution of
Floating-Point Intensive Workloads”. In: IEEE Trans.
Comput. 70 (2021), pp. 1845–1860.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://www.hpcg-benchmark.org/custom/index.html%3Flid=155&slid=313.html
https://www.hpcg-benchmark.org/custom/index.html%3Flid=155&slid=313.html

	Introduction
	Architecture
	Results
	Conclusion

