Open RISC-V Platforms for Energy-Efficient Scalable Computing

Luca Benini lbenini@ethz.ch, luca.Benini@unibo.it

PULP Platform
Open Source Hardware, the way it should be!
Computing is Power Bound: from the Cloud...

Largest datacenter <150MW
GPT-4 (OpenAI’23)
Training Compute: 2.1E+25 (FLOP)

Machine Learning: 10x every 2 years
AI capabilities in the power envelope of an MCU: 10-mW peak (1mW avg)

Machine Learning: 10x every 2 years

CAGR: 16%
CMOS Scaling is definitely not enough

![Graph showing energy efficiency improvements](image)

Energy Efficiency \(\frac{1}{\text{Power}\cdot\text{Time}}\) \(\Rightarrow\) 10x every 12 years...
Necessity is the Mother of Invention
Efficiency: compute & Move

L0: Operand Memory
 Latency=1
 Density=1
 Private

I-Reg

L1: Tightly Coupled DM
 Latency<10
 Density≈10
 Shared

PE core

D-Reg

From/to L0

Reg

From/to L1

From/to L0

PE core

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

L2: Main Memory
 Latency>100
 Density≈100
 Shared, Remote

L2 (D,I)
PE: The power of ISA Extension

ISA is extensible by construction (great!)

- **Snitch core**: around 20KGE
 - Speed via simplicity (1GHZ+)
 - L0 Icache/buffer for low energy fetch
 - Shared L1 for instruction reuse (SPMD)

- **Extensible** → “Accelerator” port
 - Minimal baseline ISA (RISC-V)
 - Extensibility: Performance through ISA extensions (via accelerator port)

- **Latency-tolerant** → Scoreboard
 - Tracks instruction dependencies
 - Much simpler than OOO support!

double sum = 0;
for (int i = 0; i < N; ++i) {
 sum += A[i] * B[i];
}

fld ft0, 0(a1) 70 pJ
fld ft1, 0(a2) 70 pJ
addi a1, a1, 8 50 pJ
addi a2, a2, 8 50 pJ
fmadd.d fa0, ft0, ft1, fa0 80 pJ
bne a1, a3, -5 50 pJ

Memory access, operation, iteration control – can we do better?
Note: memory access (>1 cycle even for L1) \(\rightarrow\) need latency tolerance for LD/ST
Stream Semantic Registers & FREP

- Intuition: High FPU utilization ≈ high energy-efficiency
- Idea: Turn register read/writes into implicit memory loads/stores.
- Extension around the core’s register file
- Address generation hardware

```
loop:
  scfg 0, %a, ldA
  scfg 1, %b, ldB
  fmadd r2, r0, r1
```

- Increase FPU/ALU utilization by ~3x up to 100%
- SSRs ≠ memory operands
 - Perfect prefetching, latency-tolerant
 - 1-3 SSR (2-3KG/SSR)
- FREP: floating point repetition buffer
RISC-V ISA Extension for Target Workload

Efficient DNN inference & training

Inference ≠ Training Quantization

- Inference: INT8 quantization is SoA
- Training: High dynamic range needed for weights and weight updates

fp32 is still standard for DNN training workloads. Low precision training with **bf18** and **fp8**

Support a wide variety of FP formats and instructions:

- Standard: **fp64**, **fp32**, **fp16**, **bf16**
- Low precision: **fp8**, **altfp8**
 - **fp8** (1-4-3): forward prop.
 - **altfp8** (1-5-2): backward prop.
- Expanding ops needed e.g. accumulation
Cascade of EXFMAs vs EXSDOTP

Non-distributive FP addition → Precision Loss

- **Fused** EXSDOTP (i.e. lossless)
- Single normalization and rounding step
- **Smaller** area and **shorter critical path**
- Product by-pass to compute **fused three-term addition** (vector inner sum)
- **Stochastic rounding** supported (+3% area)
ExSdotp Enables Performance & Efficiency Improvements

- Snitch enhanced with multi-format, mixed-precision FPU
- 12nm tech, 1 GHz (TT, 0.8V, 25°C)

Performance

<table>
<thead>
<tr>
<th>Format</th>
<th>64x64</th>
<th>64x128</th>
<th>128x128</th>
<th>128x256</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP64 FMA</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>96</td>
</tr>
<tr>
<td>FP32 FMA</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>96</td>
</tr>
<tr>
<td>FP16->FP32 ExSdotp</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>96</td>
</tr>
<tr>
<td>FP8->FP16 ExSdotp</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>96</td>
</tr>
</tbody>
</table>

Energy Efficiency

<table>
<thead>
<tr>
<th>Format</th>
<th>64x64</th>
<th>64x128</th>
<th>128x128</th>
<th>128x256</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP64 FMA</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>96</td>
</tr>
<tr>
<td>FP32 FMA</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>96</td>
</tr>
<tr>
<td>FP16->FP32 ExSdotp</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>96</td>
</tr>
<tr>
<td>FP8->FP16 ExSdotp</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>96</td>
</tr>
</tbody>
</table>
What About Sparsity? Indirect SSR Streamer

- Based on existing 3-SSR streamer
 1. Extend 2 SSRs to ISSRs
 2. Add index comparison unit between ISSRs
 3. Forward result indices to 3rd SSR

- Control interface to FPU sequencer (frep.s)
 - Result index count unknown ahead-of-time

- Enables general sparse-sparse LA on fibers:
 - dotp: index match + fmadd
 - vadd: index merge + fadd
 - elem-mul: index match + fmul
 - vec-mac: index merge + fmadd
ISSR Performance Benefits

• Notable single-core speedups over RV baseline
 • CsrMV: up to 7.0× faster, 79% FP util.
 • SpV+SpV: up to 9.8× faster / higher FP util.
 • SpV·SpV: up to 7.7× faster / higher FP util.
 • VTI (3D stencil code): up to 2.9× faster, 78% FP util.

• Significant benefits in multicore cluster:
 • CsrMV: up to 5.0× faster, 2.9x less energy
 • CsrMSpV: up to 5.8× faster, 3.0x less energy
 • VTI: up to 2.7× faster

• Notably higher peak FP utilizations than SoA CPUs (69×), GPUs (2.8×) on CsrMV
ISSR Performance on Stencils

• Various 2D/3D stencils on 8-worker-core cluster
 • FP64, 64²/16³ grid chunks, up to 4× unroll
 • Tuned LLVM RV32G baseline vs ISSR-enhanced kernels

• Geomean 2.7× speedups, 82% FP utilization
 • ISSR IPC consistently >1 as ISSRs enable pseudo-dual-issue

• Baseline perf. degrades for large (3D) stencils
 • Cannot maintain unroll and keep reusable inner-loop data in register file
 • ISSR streams avoid this bottleneck: 2.5× 2D → 3.2× 3D geomean speedup
Efficient PE (snitch) architecture in perspective

1. Minimize control overhead → Simple, shallow pipelines
2. Reduce VNB → amortize IF: SSR-FREP + SIMD (Vector processing)
3. Hide memory latency → non-blocking (indexed) LD/ST+dependency tracking
4. Highly expressive, domain-specific instruction extensions (thanks, RISC-V!)
Compute Efficiency: the Cluster (PEs + On-chip TCDM)

- **L0:** Operand Memory
 - Latency = 1
 - Density = 1
 - Private

- **L1:** Tightly Coupled DM
 - Latency < 10
 - Density ≈ 10
 - Shared

- **L2:** Main Memory
 - Latency > 100
 - Density ≈ 100
 - Shared, Remote

From/to L0

From/to L1
Snitch Cluster Architecture

- **Efficient PE**
 - Hide L1 TCDM “residual” latency
 - RV + Domain-specific ISA extensions

- **Low latency access TCDM**
 - Multi-banked architecture
 - Fast logarithmic interconnect

- **DMA for data movement**
 - Double buffered copy in/out to hide L2 latency

- **Fast synchronization**
 - Atomics
 - Barriers
High speed logarithmic interconnect

Do not underestimate on-chip wires...

World-level bank interleaving «emulates» multiported mem

@1GHz, 8-16 PEs, Latency: 2 cycles + stalls for banking conflicts
Efficient *Explicit* Global Data Mover

- 512-bit AXI DMA – double-buffered transfers
- Tightly coupled with Snitch (<10 cycles configuration)
- Operates on wide 512-bit data-bus
- Hardware support to copy 2-4-dim shapes
- Higher-dimensionality handled by SW
- Intrinsics/library for easy programming

```c
// setup and start a 1D transfer, return transfer ID uint32_t __builtin_sdma_start_oned(
    uint64_t src, uint64_t dst, uint32_t size, uint32_t cfg);
// setup and start a 2D transfer, return transfer ID uint32_t __builtin_sdma_start_twod(
    uint64_t src, uint64_t dst, uint32_t size,
    uint32_t sstrd, uint32_t dstrd, uint32_t nreps, uint32_t cfg);
// return status of transfer ID tid uint32_t __builtin_sdma_stat(uint32_t tid);
// wait for DMA to be idle (no transfers ongoing) void __builtin_sdma_wait_for_idle(void);
```
Where does the Energy go?

In an 8-core cluster

- **Integer core** uses 2% of power
- **SSR/FREP hardware** uses 5% of power

FPU uses 50% of power

Inevitable to have local memory (e.g., GPU/GPU L1 cache, vector register file)

Spending energy where it contributes to the result → **High Efficiency**
Can we make it Bigger?

• **Why?**
 • Better global latency tolerance if $L_1_{\text{size}} > 2 \times L_2_{\text{latency}} \times L_2_{\text{bandwidth}}$ (Little’s law + double buffer)
 • Easier to program (data-parallel, functional pipeline...)
 • Smaller data partitioning overhead

• **A large “MemPool”**
 • 256+ cores
 • 1+ MiB of shared L1 data memory
 • ≤ 10 cycle latency (Snitch can handle it)

• **Physical-aware design**
 • WC Frequency > 500 Mhz
 • Targeting iso-frequency with small cluster

Butterfly Multi-stage Interconnect 0.3req/core/cycle, 5 cycles
Efficient Cluster architecture in perspective

1. Memory pool – efficient sharing of L1 memory
2. Fast and parsimonious synchronization
3. Data Mover + Double buffering – explicitly managed block transfers at the boundary
4. More cores and more memory per cluster for more latency tolerance!
Compute Efficiency: the Chip(let) (Clusters+Off-die Mem)

L0: Operand Memory
- Latency=1
- Density=1
- Private

L1: Tightly Coupled DM
- Latency<10
- Density≈10
- Shared

L2: Main Memory
- Latency>100
- Density≈100
- Shared, Remote
Occamy: RISC-V goes HPC Chiplet!

- **HBM2e DRAM**
 - 512 GB/s
 - Group-to-Group: 384 GB/s
 - Die-to-Die: 64 GB/s

- **HBM2e PHY**
 - <410 GB/s

- **Off-die Serial Link**
 - 8 GB/s

- **System-level DMA**
 - 8 GB/s

- **Die-to-Die Serial Link**
 - 8 GB/s

- **Die-to-Die Serial Link**
 - 64 GB/s

- **Global NoC**
 - 64b

- **Periph**
 - 32b
 - SPI
 - I2C
 - UART
 - GPIO
 - Timers

- **CVA6 Host**
 - Runs Linux
 - Peripheral Manager
 - <1% traffic

- **64KB SPM**
 - 64bit

- **1MB SPM**
 - 512b

- **ZeroMem**
 - 8GB / 512bit

- **Multi-cluster Multi-core Compute**
 - 6 groups of each 4 clusters
 - Each cluster has 8 compute cores + 1 DMA core

- **Total of 216x Snitch cores**
 - with Multi-precision FPU (64 to 8)

- **@1GHz**

- **Long & short bursts**
- **1D & 2D patterns**
NoC: Efficient and Flexible Data Movement

Problem: HBM Accesses are critical in terms of
- Access energy
- Congestion
- High latency

Instead reuse data on lower levels of the memory hierarchy
- Between **clusters**
- Across **groups**

Smartly distribute workload
- **Clusters**: Tiling, Depth-First
- **Chiplets**: E.g. Layer pipelining

Big trend!
High-Performance, General-Purpose

Our **scalable architecture** is **general-purpose** and **high-performance**

Peak chiplet performance @1GHz:

- FP64: 384 GFLOp/s
- FP32: 768 GFLOp/s
- FP16: 1.536 TFLOp/s
- FP8: 3.072 TFLOp/s

Preliminary measured results:

- **Dense Kernels:**
 - GEMMS: ≥ 80% FPU utilization (also for SIMD MiniFloat)
 - Conv2d: ≥ 75% PFU utilization (also for SIMD MiniFloat)
- **Stencils Kernels:** ≤ 60% FPU utilization
- **Sparse Kernels:** ≤ 50% FPU utilization

Chiplet taped out: 1st July 22
Silicon Interposer: Hedwig (65nm, passive, GF)

- Interlocked die arrangement
 - Prevent bending, increase stability
- Compact die arrangement
 - No dummy dies or stitching needed
- Fairly low I/O pin count due to no high-bandwidth periphery
 - Off-package connectivity: ~200 wires
 - Array of 40 x 35 (-1) C4s (total of 1’399 C4 bumps)
 - Diameter: 400µm, Pitch: 650µm
- Die-to-Die: ~600 wires
- HBM: ~1700 wires

Taped out: 15th of October 2022
Approaching 1T(DP)-FLOP

Dual Chiplet System Occamy:
- >430+ RV Cores
- 0.8 T DP-FLOP/s (no overclocking)
- 32GB of HBM2e DRAM
- Low tens of W (est.)

Aggressive 2.5D Integration

Carrier PCB:
- RO4350B (Low-CTE, high stability)
- 52.5mm x 45mm

Industry partners are key (thanks)!

[GitHub links]
github.com/pulp-platform/snitch
github.com/pulp-platform/serial_link
Highly expressive DSL family – high-level transformations, support for explicitly managed memory

DaCeML: Data-Centric Machine Learning

Deep Learning Models
- BERT
- YOLOv5
- ...

![Diagram of DaCeML architecture](image)

- **DaCeML frontend**
 - PyTorch
 - Other DNN Frameworks
 - TensorFlow
 - mxnet
 - ONNX

- **DaCe: Data-Centric Parallel Programming framework**
 - Data-centric IR (SDFG)
 - Coarse-Grained Transformations
 - Local Data Movement Reduction
 - Global Data Layout Optimization
 - Hardware Specialization
 - Multi-Level Optimization via Progressive Lowering

- **Library of optimized deep learning kernels**
 - GEMM, Convolution,
 - LayerNorm, Softmax, BatchNorm,
 - ...
 - SSR
 - FREP
 - DMA
 - X86
 - FPGA
 - CUDA
 - RISC-V

See RIVETS presentation by A Ivanov (Thur 15.15)
1. Multi-cluster single-die scaling \rightarrow strong latency tolerance, modularity
2. NoC for flexible Clus2Clus, Clus2Mem, C2C traffic \rightarrow reduce pressure to Main memory
3. Top level NoC Routes to “local main memory” / “global main memory” balanced BW
4. Modular chiplet architecture: HBM2e, NoC-wrapped C2C, multi-chiplet ready
5. DSL and tooling for programming
System Level: Monte Cimone, the first RISC-V Cluster

4x E4 RV007 1U Custom Server Blades:
• 2x SiFive U740 SoC with 4x U74 RV64GCB cores
• 16GB of DDR4
• 1TB node-local NVME storage
• PCIe expansion card w/InfiniBand HCAs
• Ethernet + IB parallel networks

Designed for HPC “pipe cleaning”
Preparing for Occamy: Accelerator on PCIe cards

- Currently using FPGA-mapped “tiny Occamy”
 - VCU128 with HBM

- Supporting hybrid usage
 - Boot directly on standalone CVA6
 - Do not boot and let the Host control the cluster
 - HW probing by on-board device tree overlays

- High SW stack re-usability for both modes
 - Same Linux drivers to map the cluster
 - Same OpenMP offloading runtime

Targeting HPC and Automotive
(European JUs focus on RISC-V)
Luca Benini, Alessandro Capotondi, Alessandro Ottaviano, Alessio Burrello, Alfio Di Mauro, Andrea Borghesi, Andrea Cossettini, Andreas Kurth, Angelo Garofalo, Antonio Pullini, Arpan Prasad, Bjoern Forsberg, Corrado Bonfanti, Cristian Cioflan, Daniele Palossi, Davide Rossi, Fabio Montagna, Florian Glaser, Florian Zaruba, Francesco Conti, Georg Rutishauser, Germain Haugou, Gianna Paulin, Giuseppe Tagliavini, Hanna Müller, Luca Bertaccini, Luca Valente, Manuel Eggimann, Manuele Rusci, Marco Guermandi, Matheus Cavalcante, Matteo Perotti, Matteo Spallanzani, Michael Rogenmoser, Moritz Scherer, Moritz Schneider, Nazareno Bruschi, Nils Wistoff, Pasquale Davide Schiavone, Paul Scheffler, Philipp Mayer, Robert Balas, Samuel Riedel, Segio Mazzola, Sergei Vostrikov, Simone Benatti, Stefan Mach, Thomas Benz, Thorir Ingolfsson, Tim Fischer, Victor Javier Kartsch Morinigo, Vlad Niculescu, Xiaying Wang, Yichao Zhang, Frank K. Gürkaynak, all our past collaborators and many more that we forgot to mention.
Conclusion

- Efficient, RT, Safe Secure: PE, Cluster, SoC, System
- Key ideas
 - Deep PE optimization → extensible ISAs (RISC-V!)
 - Low-overhead work distribution. Latency hiding → large “mempools”
 - Heterogeneous architecture → host+accelerator(s)
- Game-changing technologies
 - “Commoditized” chiplets: 2.5D, 3D
 - Computing “at” memory (DRAM mempool)
 - Coming: optical IO and smart NICs, switches
- Challenges:
 - High performance RV Host
 - RV HPC software ecosystem?
 - Access to technology!