Understanding and working with ‘:%
PULP ==

Parallel Ultra Low Power

Pasquale Davide Schiavone
and the PULP team

"Integrated System laboratory, ETH, Zurich, Switzerland D epa”;":;jﬂ%fﬂ’;%féﬂiﬁ; ‘;I”n’;
2Energy Efficient Embedded Systems Laboratory, University Of Bologna, Bologna, Italy

ETHzurich

?Integrated Systems Laboratory
13.06.2019

Near Sensor (aka Edge) Processing

Sense Onchip Transmit
VEMS IMU Processing
R v Smart Architecture
MEMS Microphone \A v _
0 45t Q ‘% Parallel Processing
—
ULthlr?a,? fr &\ 9 >)) v Power-saving Design
(WY I a—-.« / :
EMG/ECG/EIT / ULP 4 Near-Threshold
') 1+3 GOPS
o L S ik 4 Low Power Technology
100 uW + ~10 mW ﬁ\ Idle: ~1uW

Active: ~ 50mW

Battery + Harvesting powered
- afew mW power envelope

APULP

L2 L2

Bank Bank 300

Logarithmic Interconnect

RISC-V

©
=
c
<]
o
]
©
o

“»PULP

PULPissimo Architecture

RISC-V based advanced microcontroller
— 512kB of L2 Memory

— 16kB of energy efficient latch-based
memory (L2 SCM BANK)

Rich set of peripherals:
— QSPI (up to 280 Mbps)
— Camera Interface (up to 320x240@60fps)
— 12C, 12S (up to 4 digital microphones)
— JTAG (Debug), GPIOs,
— Interrupt controller, Bootup ROM

Autonomous 10 DMA Subsystem
(UDMA)

Power management
— 2 low-power FLLs (10, SoC)

APULP

o
e
c
o
(&)
°
]
o

private banks

L2
Bank Bank

“»PULP

CLUSTER

)
3
om
S
[
wd
7]
=
(&)

Peripheral Int.

TIGHTLY COUPLED DATA MEMORY

Data Data Data Data
Mem Mem Mem Mem

Logarithmic Interconnect

RISCY B RISCY B RISCY ® RISCY RISCY B RISCY B RISCY § RISCY
CORE | CORE ¥ CORE § CORE CORE B CORE B CORE [CORE

Shared FPU Shared FPU

Shared Instruction Cache

e 8 RISC-V multicore cluster
— 64kB of L1 Memory CLUSTER TIGHTLY COUPLED DATA MEMORY

« Shared FPU for efficient
resources minimization
— 2FPU, 1 every 4 cores

® Shared I$ Logarithmic Interconnect
_ Optimize CaChe usage RI5CY B RI5CY B RISCY § RI5SCY RI5CY B RISCY B RISCY B RI5SCY

* Multi-Core event unit for barriers

and clock-gate managment
 DMA for efficient L2&—> L1 data
transfers

)
3
om
S
]
2
7]
=
(&)

Shared FPU Shared FPU

Peripheral Int.

Shared Instruction Cache

“»PULP

The RISC-V PULP cores

“»PULP

PULPissimo Architecture

RISC-V based advanced microcontroller
— 512kB of L2 Memory

— 16kB of energy efficient latch-based
memory (L2 SCM BANK)

Rich set of peripherals:
— QSPI (up to 280 Mbps)
— Camera Interface (up to 320x240@60fps)
— 12C, 12S (up to 4 digital microphones)
— JTAG (Debug), GPIOs,
— Interrupt controller, Bootup ROM

Autonomous 10 DMA Subsystem
(UDMA)

Power management
— 2 low-power FLLs (10, SoC)

APULP

o
e
c
o
(&)
°
]
o

private banks

L2
Bank Bank

Ariane

RISCY+FPU

. .

Zero-riscy

Micro-riscy .

»PULP

Ariane

RISCY+FPU

RISCY
Zero-riscy
Micro-riscy

Now part of @ lowRISC under the «IBEX» name

»PULP

Different Workload? Different core

llllll
lllllllllll

A B GROUP

PROVEN PROCESSOR IP

II
IIIIIIIII

----- Ariane

IIIIII

APULP &,

RISCY+FPU

y4
Micro-riscy

RISCY
ero-riscy

RI5CY Processor: our workhorse core

4-stage pipeline
— RV32IMFCXpulp

— 70K GF22 nand2 equivalent gate
(GE) + 30KGE for FPU

— Coremark/MHz 3.19

— Includes various extensions
* pSIMD
* Fixed point
« Bit manipulations
« HW loops

Silicon Proven

— SMIC130, UMC65, TSMCS5LP,
TSMC40LP, GF22FDX

»PULP

RISC-V core

I
/
I
g BR
i Nt
=]

Y
LSuU
A

=
o
RD%—-
J
EX

[TCDM - Log. Interc

OpC
—F
© Dotp-, %_’

A= SN
https://github.com/pulp-platform/riscv

Debug Interface][
A0 o
o 3 =
gl 3 g Qe
c | Po 3
]

* NEW Floating Point Unit:
— lterative DIV/ISQRT (9 cycles)

— Parametrizable latency for MUL, ADD,
SUB, Cast

— Single cycle load, store

RISCY simplified pipeline

Instr Memory

Instr Address Instr Data Data Address

Data Memory

A

Align and
Decompress

Decode
operand
s fwd

Jumps

Branches

»PULP

PULP Cores Memory Interface (1/2)

Request with Address (32bits) and request (1bit) signal
Byte Enable (BE) (4bits): byte, short or word memory transaction) in case of Load/Store
Write Enable (WE) (1 bit)
wdata (32bits): data to write in case of store operations

Response with Grant signal and Valid signal
The core can be interfaced with multicycle memory accesses
Grant comes from the arbiter
Valid from the memory subsystem
rdata (32bits): data to read. It has to be sampled when the valid signal is high

clk | l J | | | | l I | | l
data_addr o HEEX A X A X
data_wdata o IEEN Wowml X vaw

data_req o — \
data gnt i | \
data rvalid i / \

data rdata | DX R X o

data_we o HEEX Wi X Ve

“%PULP data_be o HEEX EEL X I
P

PULP Cores Memory Interface (2/2)

Back2Back Memory Transactions

clk | | | | | | | | | 1 | |
data_addr o HEEEX Add1 X Add2 X
data_wdata_o EEEEXC Whatal X Wdata2 X

data req o — \
data gnt i 1/ \
data rvalid i / \
data_rdata i X RDatal X RData2 X

data_we o B wer XC We2 X ——
data_be o B e X s X

STALL EX STAGE STALL WB STAGE

Slow Memory Transactions

clk
data addr o
data_wdata_o

data req o

data gnt i

data rvalid i
data rdata i

»PULP e

data _be o

Xpulp Extentions: General Purposes Extensions 1

* Memory Access Extensions

« Misaligned memory accesses (not ISA extension)
 Load or Store 32/16bit values with non-multiple of 4/2 addresses

« Useful when dealing with packet-data (32bits values holding 2/4 elements)

* ltrequires 2 access to the memory, data manipulation done in the load-
store-unit

* e.g. LOAD 32bit at 0x0000_0002
 Read from memory higher 16bits at 0x0000_0000

 Read from memory lower 16bits at 0x0000_0004 and pack the
data

« Save instructions (code size) and speed up execution
 Explicit load to 0x0000_0000 and 0x0000_0004, shift and or

operations _
Original RISC-V Misaligned Ext
lwx2, 0(x10) Iw x2, 2(x10)
Iw x3, 4(x10)
slri x2, x2, 16

slli x3, x3, 16

‘% PU LI:; or X3, x3, x2

Xpulp Extentions: General Purposes Extensions 2

* Memory Access Extensions

 Post Increment Load/Store
« Automatic register update with computed address
 Useful in array iterations
 Save instructions
* |t requires extra write register file port or slower execution

 Register-Register Load/Store (and Post Increment)

 Immediate is only 12bits
 Use register-register address calculation for 32bits offset

Original RISC-V Autolncrement Load/Store Ext

Iw x2, 4(x10) Iw x2, 4(x10!)
Iw x3, 4(x12) Iw x3, 4(x12!)
addi x10, x10, 4

addi x12, x12, 4 LooP

“>PULP o

Xpulp Extentions: General Purposes Extensions 3

* Hardware loops extensions

» HWLs or Zero Overhead Loops to remove branch overheads in for loops.

 Smaller loop benefit more!

* Loop needs to be set up beforehand and is fully defined 3 SP regs by:
o Start address - Ip.starti L, Imnm12 - START_REG]IL] = PC + 2*Imm12
« Endaddress -2 Ip.endil, Imm12 - END_REG]IL] = PC + 2*Imm12
 Counter - Ip.count{-,i}, L, {rs1,iImm12} - COUNT_REGIL] = rs1/lmm12

» Short-cut - Ip.setup{-,i}, L, {rs1,ImmC}, Imm12

- START REGIL] = PC + 4, END_REGIL] = PC + 2*Imm12, COUNT_REGI[L] = {rs1,ImmC}

 Two sets registers implemented to support nested loops (L=0 or 1)

 Performance:
 Speedup can be up to factor 2!

SPULP

Original RISC-V

mv x5, 0

mv x4, 100
Lstart:

addi x4, x4, -1
nop

nop

bne x4, x5, Lstart

HW Loop Ext

Ip.setupi 100, Lend
nop
Lend: nop

Xpulp Extentions: Bit Manipulation

* Bit manipulation extensions

 RISC-V reserved the “RVB” extensions but it is still an on-going topic
» PULP developed its own bit-manipulation and possibly will align with
RVB
« Contribution to the official task in the RISC-V community
« Bit Manipulation instructions list
« Extract N bits starting from M from a word and extend (or not) with sign
* Insert N bits starting from M in a word
« Clear N bits starting from M in a word
« Set N bits starting from M in a word

e Find first bit set Original RISC-V BitMan Ext
* Find last bit set mv x5, 0 p.cnt x8, x8
mv x7,0
« Count numbers of 1 (popcount) mv x4,32
° ROtate Lstart;
andi x6, x8, 1
add x7, x7, x6
addi x4, x4, 1

slri x8, x8, 1

0‘;% PULP bne x4, X5, Lstart

Xpulp Extentions: DSP

» DSP extensions
* General purposes

« ABS, CLIP/Saturation Original RISC-V DSP Ext
add x4, x4, x5 .addRN x4, x5, x5, 1
 MIN, MAX addi x4, x4, 1 P

« MAC and MSU

slri x4, x4, 1

* Fixed Point Support

« ADD and SUB with normalization and round
 MUL and MAC with normalization and round

Possibility to share some resources

«®

ABS reuses the adder and comparator in the ALU

Clip adds a comparator but reuses adder and previous comparator
Normalization done by connecting adder output to the shifter
Round done by exploiting multi-operand adders

OLLP

Xpulp Extentions: packed-SIMD 1/4

* packed-SIMD extensions

 RISC-V reserved the “RVP” extensions but it is still an on-
going topic
* |t also includes DSP extensions

« Differently from “RVV” vectorial extensions, vectors are packet
to the integer RF
» Make usage of resources the best in performance with little overhead
« Target for embedded systems, RVV is for high performance

* pSIMD in 32bit machines

 \ectors are either 4 8bits-elements or 2 16bits-elements
 pSIMD instructions

«®

UL

Computation add, sub, shift, avg, abs, dot product
Compare min, max, compare

Manipulate extract, pack, shuffle

-

Xpulp Extentions: packed-SIMD 2/4

» Same Register-file

« The instruction encode how to interpret the content of the register

rs1 ‘ 0x03 | 0x02 | 0x01 | 0x00 ‘

rs2 ‘ 0x0D | 0x0C | 0x0B | Ox0A ‘

add rD, rs1, rs2 rD = 0x03020100 + OxODOCOBOA

add.h rD, rs1, rs2 rD[
rDJ[
add.b rD, rs1, rs2 rD[
rDJ[
rDJ
rDJ

»PULP

W N0 = O

= 0x0100 + OxOBOA
= 0x0302 + 0xODOC

= 0x00 + Ox0A
= 0x01 + Ox0OB
= 0x02 + 0x0C
= 0x03 + 0x0D

Xpulp Extentions: packed-SIMD 3/4

HW reuse for small overhead

Vector modes:

bytes, halfwords, word

4 byte operations
With byte select : s

2 halfword operations
With halfword select

1 word operation 2 '8 R P:W;E AL "*:.\"B A\
Play with carry chain i) 5 \ g A g o A ‘

32bit adder = 35bit adder
Vector halfword sub = Carry = co, 1, co, 1 ‘
Vector byte sub 2> Carry=1,1,1, 1
word sub - Carry = co, co, co, 1

Vectorial Adder

»PULP

Xpulp Extentions: packed-SIMD 4/4

Shuffle instructions

In order to use the vector unit the elements have to be aligned in the
register file

Shuffle allows to recombine bytes into 1 register

hufle2 b rD. rA Mask bits rD

pv.shuffle2.b D, rA, r wo | wes | woz [wor [woo
rD{3}=(rB[26]m \ \ \
'D{2} = (B[18]==0) ? rA:rD {rB[17:16]} A

'D{1} = (rB[10]==0) ? rA:rD {rB[9: 8]} w1 “”3\ “"‘\ \ wio
rD{0} = (rB[2]==0) ? rA:rD {

rB[1: 0]} \ \)/

With I'X{I} = rX[(|+’|)*8-’| |*8] Mask WW \um
o

rD = wll w3 w2 wil
«®dPULP

for (i

0; i < 100; i++)
drij =

] = a[i] + b[i];

Baseline Auto-incr load/store

mv x5, 0
mv x4, 100
Lstart:
b x2, 1(x10!)
b x3, 1(x11!)
addi x4, x4, -1
add x2, x3, x2
sb x2, 1(x12!)
bne x4, x5, Lstart

mv x5, 0

mv x4, 100

Lstart:
1b X2, 0(x10)
1b x3, 0(x11)
addi x10,x10, 1
addi x11,x11, 1
add x2, x3, x2
sb X2, 0(x12)
addi x4, x4, -1
addi x12,x12, 1

bne x4, x5, Lstart

lp.setupi 100, Lend
1b x2, 1(x10!)
1b x3, 1(x11}!)
add x2, x3, x2
Lend: sb x2, 1(x12!)

Ip.setupi 25, Lend
lw x2, 4(x10!)
lw x3, 4(x11!)
pv.add.b x2, x3, x2
Lend: sw x2, 4(x12!)

11 cycles/output 8 cycles/output 5 cycles/output 1,25 cycles/output

“»PULP

86 - PULP

ALU architecture

Advanced ALU for Xpulp
extensions

Optimized datapath to reduce
resources

Multiple-adders for round

Adder followed by shifter for
fixed point normalization

Clip unit uses one adder as
comparator and the main
comparator

»PULP

> operand_a

> operand_b

> operand_c > bmask_a > bmask_b

adder

Y

alu_operator

branch_decision

l alu_result

MUL architecture

(blue) 16x16 with sign selection for
short multiplications [with round and

normalization]. 5 cycles FSM for P R A
higher 64-bits (mulh* instructions)

(purple) One single cycle mac unit

that performs MAC, MSU and MUL

(red) short parallel dot product

(grey) byte parallel dot product

Clock gating to reduce switching i g2
activity between the integer and mult_resut
SIMD multiplier

SPULP

Dot Product Multiplier

Dot Product: (half word example)

C[31:0] = A[31:16]*B[31:16] + A[15:0*B[15:0] + C[31:0]
\ Y J (.) { J

32 bit 32 bit 32 bit

=> 2 multiplications, 1 addition, 1 accumulation in 1 cycle!

Partial Product
Generator

nnnnnnnnnnnnn

- o @ [1] [1 1-3 |
7T 2% 35:2 compressor
[1 i R . i
32& - ’ E 3z L
r D— E:E_j_’z ras [31:0]
2 B 2
P S [15:0) lj 3 8 b %
[18:01 I, |
e
na _} Fa

2D Convolution with Xpulp Extensions:
performance + less memory pressure

Output N Output N+1
1/2/3|4|5 11213045
67,8910 m 6/7/8|910

Y 11]12[13]14]15 Iter. 11|12|13/14/15
E 16/17/18/19/20 16/17[18[19/20
= 21/22/23|24 N 21/22(23/24/25
1 26(27(28/29
/ 1 Byte/Pixel \L \

a) 5x5/convolution retired data fregh \data
%r121234//v'move 6 7 8 9 |ri2
E 3|6 7 8 9 / move 11 12 13 14| r13
S rl4 |111213 14/ move 16 17 18 19| rl4
% r15 (16 17 18 19/ move 21 22 23 24| r15
o r16 |21 22 23 24/ Shuffle 10 15 20 25| r16
© 7[5 1015 20/ l.lwz 26 27 28 29 r17

b) rls 25 I.Ib 30| r18

APULP

= Convolution in registers
= 5x5 convolutional filter

2D Convolution with Xpulp Extensions:
performance + less memory pressure

Output N Output N+1
1/2/3/4|5 11213/4l5
67,8910 m 6/7/8|910

Y 11]12[13]14]15 Iter. 11|12|13/14/15
g 16/17/18/19/20 16/17[1819 20
= 21/22/23(24/25/| |« 21/22(23(24/25
f 26(27/28(2930
/ 1 Byte/Pixel AVER
/ : AW
a) 5x5 convolution retired data fresh data
%r121234//v'move 6 7 8 9 |ri2
E 3|6 7 8 9 / move 11 12 13 14| r13
S rl4 |111213 14/ move 16 17 18 19, rl4
% r15 (16 17 18 19/ move 21 22 23 24| r15
o r16 |21 22 23 24/ Shuffle 10 15 20 25| r16
© 7[5 1015 20/ l.lwz 26 27 28 29 r17
b) s 25 l.Ib 30| r18

APULP

= Convolution in registers
= 5x5 convolutional filter

= 7 Sum-of-dot-product
* 4 move

= 1 shuffle

= 3 lw/sw

= ~ 5 control instructions

2D Convolution with Xpulp Extensions:
performance + less memory pressure

Output N Output N+1
1/2/3/4|5 1.2.314.5
67,8910 m 6/7/8|910

Y 11]12[13]14]15 Iter. 11|12|13|14|15
E 16/17/18/19/20 16/17[18[19/20
= 21(22|23|24 N 2122232425
1 26(27(28/29
/ 1 Byte/Pixel \L \

a) 5x5/convolution retired data fregh \data
%r121234//vrmove 6 7 8 9 |rl2
E 3|6 7 8 9 / move 11 12 13 14| r13
o 4 (111213 14/ move 16 17 18 19, rl4
% r15 (16 17 18 19/ move 21 22 23 24| r15
o r16 |21 22 23 24/ Shuffle 10 15 20 25| r16
© 7[5 1015 20/ l.lwz 26 27 28 29 r17

b) rls 25 I.Ib 30| r18

APULP

= Convolution in registers
= 5x5 convolutional filter

= 7 Sum-of-dot-product
* 4 move

= 1 shuffle

= 3 lw/sw

= ~ 5 control instructions

20 instr. / output pixel = Scalar version >100 instr. / output pixel

PULP core examples — RV32IMC vs RV32IMCXpulp General code

2 bytes saved
(X instructions not

compressed)
 Number of instructions

reduced (21 vs 18)
» Removed branch penalties

APULP

start_loop:

addi a6,t1,-32

c.mv a7,tb//address of matA
addi t3,a0,-32

loopO:

c.mv a4,t3 //address of matA
c.mv az2,a’7

c.li a5,0

loop1:

Ibu a3,0(a4) //load byte

lbu a1,0(a2)

c.addi a4,a4,1 //post increment
mul a3,a3,a1 //mul

c.add ab,ab,a3 //acc after mul
andi a5,a5,255

c.addi a2,a2,1

bne a4,a0,loop1 // branch penalty
sb a5,0(ab)

c.addi ab6,a6,1

addi a7,a7,32

bne a6,t1,loop0 //branch penalty
addi t1,a6,32

addi a0,a4,32

bne t1,t4,start_loop

start_loop:

addi 13,t5,-32

c.mv a7,s2//address of matB

addi 11,t4,-32

Ip.setupi x0,32,stop0

c.mv a3,t1//address of matA

c.mv a2,a’

cli a5,0

sub a4,t4,t1 //loop count?

Ip.setup x1,a4,stop1 //hw loop

p.lou a0,1(ad!) //load byte with post increment
p.lou a1,32(a2!)

p.mac ab,a0,a1//mac

stop1: andi a5,a5,255

p.sb ab5,1(t3!) //store result with post increment
stop0: c.addi a7,a7,1

addi 15,t5,32

addi t4,a3,32

bne t5,t6,start_loop

PULP core examples — RV32IMCXpulp General code vs Opt code

 The innermost loop has 4x less iterations
* 4 bytes per matrix are loaded as a 32b word
« Dot product with accumulation performs in 1 cycle 4 macs

... lliterate #COL/4

Ip.setup x1,a4,stop1 Ip.setup x1,a6,stop1

p.lbu a0,1(a3!) p.lw a1,4(t1!) /load 4-bytes with postinc
p.lou a1,1(a2!) p.lw a5,4(t3!)

stop1: p.mac ab5,a0,a1 stop1: pv.sdotsp.b a7,a1,ad /4 mac

»PULP

PULP cores Interrupts

Asynchronous events

«®

If interrupt is taken, jJump to xtvec

xtvec holds the base address to jump
+ 4*interrupt ID for computing the actual address

No delegation supported

All interrupts are handled in machine mode
External interrupt controller interact with peripheral
subsystem and SW events

OLLP

PULP cores interrupts protocol

Asynchronous protocol between CORE and INTController

The core takes few cycles before jumping
The external interrupt controller may change ID number
e.g. higher priority requests from peripherals

The core tells the interrupt controller which ID has been used to calculate the
address of the interrupt vector table

The interrupt controller clears the taken ID

4 Y\ req ()
id Sy g
Interrupt PULP C
Controller «ack ore
id 5
- J k J

SPULP

clk | J/
int ID 01) 02 |
req / Ji \
ack [\ I\
ackID 77, O Y AN

“»PULP

Wait For Interrupt & Power manager

WEFI instruction disables the clock
Dynamic power saved when core is in IDLE
Taken or Not interrupts wake up the core that starts from the instruction after WF|

The core waits for all the inflight instructions before switching off the clock
eg if a load is waiting for the valid signal, long divisions, floating point mac, debug

8 I LT LT L
instruction : X WFI // X
irq req // /

The pipeline and state registers are clock gated when not used

The ALU, Integer Multiplier and Dot Product units have different operands registers
In the ID stage, the decoded instruction can be part of one of this 3 domains, the others 2 are

clock gated .
ol [L L LT L L L e
instruction X ALU MULYALU X ALU Y ALU YMUL)DOTPDOTPDOTP(MUL X ALU X ALU
alu operands . X X X X X

mul operands : : X X X

SPLULP dopt operands 777777 7,

Performance Counter 1/3

Registers in the CSR space that counts events

Number of cycles and number of retired instructions used to calculate
“IPC - Instructions per cycle”

Performance counters used for counting the stalls

//LOAD STALL
Load stalls lw x10, 0x0(x2)

Value not yet returned from memory

add x10, x10, Ox4

PC IF ID EX

A+4 to Imem Y from Imem[A] add needs addr to

value from Dmem
Iw 2 STALL

A+8 to Imem Y from Imem[A] add needs Bubble D from
value from Dmem
Iw 2> FWD

A+12 to Imem Z from Imem[A+4] decode Y add

APULP

Performance Counter 2/3

Jump stalls (jalr)
Stall to break path from EX stage to Imem
PC IF ID EX WB
A+4 to Imem Y from Imem[A] jalr needs mul
x10> STALL
x10+0x4 to Bubble Jump to
Imem x10+0x4

//JALR STALL
mul x10, x10, x10

jalr x11, x10, Ox4

»PULP

Performance Counter 3/3

Other performance counters used to monitor

Number of cycles lost for fetching (Instruction Cache for instance)
Number of load, stores, branches, taken branches, jumps and compressed instructions

Address Perf Counter Description

0x782 LD_STALL Number of load data hazards

0x783 JR_STALL Number of jump register data hazards

0x784 IMISS Cycles waiting for instruction fetches, i.e. number of
instructions wasted due to non-ideal caching

0x785 LD Number of data memory loads executed.
Misaligned accesses are counted twice

0x786 ST Number of data memory stores executed.
Misaligned accesses are counted twice

0x787 JUMP Number of unconditional jumps (j, jal, jr, jalr)

0x788 BRANCH Number of branches.
Counts taken and not taken branches

0x789 BTAKEN Number of taken branches.

Ox78A RVC Number of compressed instructions executed

dSPULP

Example Performance Counter

...enable perf counters...

csrw 0x782,x0 //reset perf counter LD_STALL

/l loop 100 times over load stall

Ip.setupi x1,100,stop_loop

lw x10,4(x14!)

stop_loop: add x11,x11,x10 //stall due to load dependency
csrr x15,0x782 // - x15 contains 100

APULP

Simulation Tracer

For every instruction executed, the core prints on a file the

Disassembly of section

00000400 <main>:

400:
404 :
408:
40c:
PC s10:
414:
418:
41c:
420:

00100537
ff010113
00050513
00112623
030010ef
00c12083
00000513
01010113
00008067

Trace file (build/pulpissimo/trace_core_1f 0.log):

Time
18880000
18960000
19000000
19040000
19080000
19120000
19160000
19200000
19240000
19280000
19320000
19360000

Cycles
455
457
458
459
460
461
462
463
464
465
466
467

PC

00000080
0000008c
00000090
00000094
00000098
0000009c
00000020
000000a4
000000a8
000000ac
000000b0O
000000b4

Instr

00c0006f
30501073
00000093
00008113
00008193
00008213
00008293
00008313
00008393
00008413
00008493
00008513

“TIME STAMP — PC - INSTRUCTION — OPERANDs and RESULTSs”

Relative jumps/branch target

Disassembled instruction

Mnemonic
jal
csrrw
addi
addi
addi
addi
addi
addi
addi
addi
addi
addi

x0, 12
x0, x0,
x1l, x0,
x2, x1,
x3, x1,
x4, x1,
x5, x1,
x6, x1,
x7, x1,
x8, x1,
x9, x1,

.text.startup.main: Instr encodlng
lui a0,0x100
addi sp,sp,-16
mv a0, a0
Sw ra,12(sp)
jal 1440 <puts>
lw ra,12(sp)
1i a0,0 # 0 < DYNAMIC>
addi SP,SP,16 <—
ret

(=]
x

w
(o)
w

[coNoNoNoNoNoNoN ol

x10, x1, ©O

x1=00000000
X2=00000000
Xx3=00000000
x4=00000000
Xx5=00000000
X6=00000000
X7=00000000
Xx8=00000000
Xx9=00000000

x10=00000000

x1:
x1l:
x1:
x1:
x1:
x1:
x1:
x1:
x1:

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Hybrid Logaritmic Interconnect

“»PULP

PULPissimo Architecture

RISC-V based advanced microcontroller
— 512kB of L2 Memory
— 16kB of energy efficient latch-based < > v
memory (L2 SCM BANK) I T M

private banks

Rich set of peripherals:
— QSPI (up to 280 Mbps)
— Camera Interface (up to 320x240@60fps)
— 12C, 12S (up to 4 digital microphones)
— JTAG (Debug), GPIOs,
— Interrupt controller, Bootup ROM

Pad Control

i

Autonomous 10 DMA Subsystem
(UDMA)

Power management
— 2 low-power FLLs (10, SoC)

APULP

Master port (initiator)

%I Slave port (target)

APB

AXI32

ROM

1

Non Interleaved L2
L2_PRI[0] L2_PRI[1]

\ 4

HWCE x4 CORE_DATA DBG_RX

1

UDMA_RX

UDMA_TX CORE_INSTR

Interconnect performance

* Low latency interconnect with word level interleaving to reduce contention
« 4 PORT memory capable of handling maximum BW of 4*32*Freq
« High performance plugs to the processing subsystem

Memory
Cut

S ———— —

L2 multiport w/interleaving support

—— 1t A 4 ——

Peripheral Channels

Peripheral RX

Channels

APB Bridge

Peripheral

uDMA Subsystem CPU Subsystem APB Subsystem

»PULP zro2z0r0 o

Non Interleaved L2
ROM L2 PRI[0] L2_PRI[1]

"

UDMA_RX AND CORE_DATA
WANT TO WRITE TO BANK 1
OF INTERLEAVED L2.
ONE IS STALLED, THE OTHER
MAKES THE TRANSACTION
(BANK CONFLICT)

\ 4

HWCE x4 CORE_DATA DBG_RX UDMA_RX UDMA _TX CORE_INSTR

Peripheral Interconnect

“»PULP

PULPissimo Architecture

RISC-V based advanced microcontroller
— 512kB of L2 Memory

— 16kB of energy efficient latch-based
memory (L2 SCM BANK)

Rich set of peripherals:
— QSPI (up to 280 Mbps)
— Camera Interface (up to 320x240@60fps)
— 12C, 12S (up to 4 digital microphones)
— JTAG (Debug), GPIOs,
— Interrupt controller, Bootup ROM

Autonomous 10 DMA Subsystem
(UDMA)

Power management
— 2 low-power FLLs (10, SoC)

APULP

o
e
c
o
(&)
°
]
o

private banks

L2
Bank Bank

Peripheral Bus

Only one APB request! If
more, stalled in the HYBRID

LOGARITMIC INTERCONNECT
(AS BANK CONFLICT)

£33 B0 3 3 O 3 0
A A A A A

PERIPHERAL BUS

APB (COMING FROM HYBRID LOG INT)

0x1A1_00000
SPULP

MDMA: An Autonomous |/O
Subsystem

“»PULP

I/O requirements

Up to 2.4GBit/s

46Mbit/s
320x240@25fps j

\ = 22
3 / New SD standard up

to 800Mbit/s

xQuadSPl up to
3Mbit/s per Tt 400Mbit/s

channel
Transcelvers

Peak BW > 100Mbit/s
> 1Gbit/s *-"’/

»PULP zro2ze o

[

PULPissimo Architecture

RISC-V based advanced microcontroller
— 512kB of L2 Memory

— 16kB of energy efficient latch-based
memory (L2 SCM BANK)

Rich set of peripherals:
— QSPI (up to 280 Mbps)
— Camera Interface (up to 320x240@60fps)
— 12C, 12S (up to 4 digital microphones)
— JTAG (Debug), GPIOs,
— Interrupt controller, Bootup ROM

Autonomous 10 DMA Subsystem
(UDMA)

Power management
— 2 low-power FLLs (10, SoC)

APULP

o
e
c
o
(&)
°
]
o

private banks

L2
Bank Bank

uDMA Subsystem

MDMA core

CONFIG Registers CONFIG Registers

PERIPH TX PROTOCOL

PERIPH RX PROTOCOL

dPULP

Offload pipeline

DOUBLE BUFFERING
A

RX CHn RX CHn RX CHn RX CHn
I/ O Buffer0 Bufferl Buffer0 Bufferl
c) U ___________________ Offload Offload . offloed
Start DMA Start DMA Start DMA
Copy Copy Copy

ACC ° D M A L2 to Acc L2 to Acc L2 to Acc
A P . Process Process Process

CC. Frocessil ng Buffer0 Bufferl Buffer0

TIME

Efficient use of system resources

HW support for double buffering allows continuous data
transfers

Multiple data streams can be time multiplexed

»PULP zro2zoe

«®

UL

Hardware Accelerator for
Neural Networks

PULPissimo Architecture

RISC-V based advanced microcontroller
— 512kB of L2 Memory

— 16kB of energy efficient latch-based
memory (L2 SCM BANK)

Rich set of peripherals:
— QSPI (up to 280 Mbps)
— Camera Interface (up to 320x240@60fps)
— 12C, 12S (up to 4 digital microphones)
— JTAG (Debug), GPIOs,
— Interrupt controller, Bootup ROM

Autonomous 10 DMA Subsystem
(UDMA)

Power management
— 2 low-power FLLs (10, SoC)

APULP

o
e
c
o
(&)
°
]
o

private banks

L2
Bank Bank

1. Motivation
2. BNNs
3. Architecture
. 4. Results
32-bit
CTRL FSM \

periph target

TP-bit
stream
INPUT INPUT BUFFER
SOURCE TP-bit
= o (———
=) "%' XNOR & POPCOUNT
% g) WEIGHT TP xnor + reduction tree to 16-bit
SOURCE
& 2 m— POPCOUNT ACCUMULATORS
& [T} ﬁ TP x 16-bit
S
OUTPUT THRESHOLD
SINK TP-bit

®PULP e w1

“»PULP

Iq

110
intfs

Mem | Mem
Bank | Bank

T T

Mem
Bank

T

Mem
Bank

T

Mem
Bank

T

Mem
Bank

T

Mem
Bank

T

Tightly Coupled Data Memory Interconnect

Mem
Bank

T

f__

T 1

uDMA

——

TTT?

STREAMER

ENGINE

CTRL

APB / Peripheral Interconnect

instrf

Ibuf
1%

1 data

RISCY

Event Unit I

)

Clock / Reset I Timer Power Debug
Generator I Controller I Unit
FLLs I Always-On I

1. Motivation

2. BNNs

3. Architecture
4. Results

GET GET GET GET PUSH GET GET

STREAMER -----=-~- FEAT |WEIGHT |WEIGHT | FEAT |WEIGHT |WEIGHT | FEAT | WEIGHT

FEAT
REGISTER

XNOR
POPCOUNT

UCODE
PROCESSOR """"""""7| py [7777777777771 px |TTTTTTTTTTTTTITTTTTTTTTTTTTTL ipx [T

CONTROLLER
REG FILE ROG

SPULP ne | ovee |1

Interrupt Controller and Event
Generator

“»PULP

PULPissimo Architecture

RISC-V based advanced microcontroller
— 512kB of L2 Memory

— 16kB of energy efficient latch-based
memory (L2 SCM BANK)

Rich set of peripherals:
— QSPI (up to 280 Mbps)
— Camera Interface (up to 320x240@60fps)
— 12C, 12S (up to 4 digital microphones)
— JTAG (Debug), GPIOs,
— Interrupt controller, Bootup ROM

Autonomous 10 DMA Subsystem
(UDMA)

Power management
— 2 low-power FLLs (10, SoC)

APULP

o
e
c
o
(&)
°
]
o

private banks

L2
Bank Bank

PULP interrupts controller (INTC)

It generates interrupt requests from 0 to 31
Mapped to the APB bus

Receives events in a FIFO from the SoC Event Generator (i.e.

from peripherals)
Unique interrupt ID (26) but different event ID

Mask, pending interrupts, acknowledged interrupts, event id
registers

Set, Clear, Read and Write operations by means of load and
store instructions (memory mapped operations)

Interrupts come from:
Timers
GPIO (rise, fall events)
HWCE
Events i.e. uDMA

dSPULP

PULP Event Generator (EVENT)

EVENTS FROM
SYSTEM
GPIO
TIMERS
HWCE
uDMA

«dPUL

EVENT DOUBLE

BUFFERING
)
(8]
<
- =
(/2] =) .
— (0) 14
o z| ¢
5) %
—_—| O < w
I =| 9 N
9 |
<
T &
(/2]
|
QDEE >
(&) 8
e
w |« <
FROM APB

A

\ 4

a

 READY
EVIID o
VALID R INTC FIFO
uDMA is waiting
 READY for some event —
EVIID o, T0 e.g. SPI starts
VALID PERIPHS when GPIO rises

A 4

v

SYSTEM
GPIO
TIMERS
HWCE

EVENT FROM
EVENT GENERATOR

SW EVENTS
(INTC APB Registers)

“»PULP

EVENTS FROM

23

READY
EVT ID

VALID

v

MASKING UNIT and PRIORITY DECODER

-

req R
id 5 [| §
p ack

PULP Core

~

J

TestBench

“»PULP

PULP TestBench

t reads the compiled file (ADDRESS - INSTRUCTION)
t sets with JTAG configuration registers

t loads via JTAG the compiled file into the memory

t writes to the FETCH_ENABLE register in the APB (Soc Control)
Now the core starts running the application

It waits for the END-OF-COMPUTATION bit

When the core returns from the “main” function, it writes to a specific memory
location in the APB (SoC Control) the word “1XXX_XXXX", where 1 indicates
the core finished its program and XXX_XXXX is the returned value

(e.g. “return 0;")

It reports an error if XXX_XXXX is not 0

dSPULP

HANDS-ON

- PULPissimo is available @ https://github.com/pulp-platform/pulpissimo
> git clone git@github.com:pulp-platform/pulpissimo.git
£ pulp-platform / pulpissimo @Unwatchv 31 WUnstar 64 YFork 22

This is the top-level project for the PULPissimo Platform. It instantiates a PULPissimo open-source system with a PULP SoC domain, but no

cluster.
D 176 commits ¥ 18 branches © 6 releases 28 7 contributors s View license
I -
Branch: master v New pull request Create new file = Upload files = Find File
T bluewww Restructure different tb modes and readd support for flash boot ... Latest commit @ae6b3a 9 days ago
i doc fixed datasheet 10 months ago
il rtl Restructure different tb modes and readd support for flash boot 9 days ago
| setup First commit of the new PULPissimo microcontroller, have fun! The PUL... a year ago
| sim Updated boot code so that it stops if bootsel is 1 2 months ago
) LICENSE.md First commit of the new PULPissimo microcontroller, have fun! The PUL... a year ago

“»PULP

Dependecies

“Ips_list.yml" holds the needed sub-IPs.

“Update-ips” to download them

Iptools downloads the IPs recursively

Iptools generates compilation scripts and [synthesis] scripts
“Ips” folder contains downloaded IPs

“rtl” folder contains PULPissimo RTL, testbench, etc

dSPULP

PULP IPs

Every IP is a different GIT repository

Easier to maintain and creates little mess on many-people
projects
Every IP has one or more maintainers of the PULP group

“src_files.yml for each IP to list the RTL files
used to generate scripts, modelsim library names, options, etc

PULPIissimo IPs are also available on GitHub

make sdk to download and install the PULP SDK
dSPULP

PULP SDK

The SDK contains all the tools and runtime support for
PULP based microcontrollers

The SDK contains from low-level bare-metal procedure for
setting the PULP cores and peripherals (e.g. crt0) all the
way up to a set of higher level functions (API) to help
applications developers to leverage all the supported
features

“dPULP

Environment Variable

VSIM_PATH points to your pulpissimo/sim folder

Execute make clean lib build opt

PULP_RISCV_GCC_TOOLCHAIN to your bin folder of the PULP
GCC

dSPULP

Compile & Simulate PULP

PULP compilation and simulation scripts and flow are based on
modelsim
To compile
cd pulpissimo/sim
make clean lib build opt
To execute an application
cd yourapplicationfolder
make clean all (to compile it)
make dis > dis.s (to generate the object dump)
make run gui=1 (to run modelsim with GUI)
make run

Assembler, Simulation Trace and Performance counter to analyze
performance

dSPULP

Programming PULP

When programming for embedded system, the very first

thing that should come to your mind is
LIMITED RESOURCES

It is completely different to write application for your personal PC than a microcontroller

You MUST know the total memory available, the architecture, the instructions of the
core etc

In the context of embedded programming, you have the possibility to finely optimize all
the SW stack to leverage your HW at the best

Some tips are coming ©

«®

OLLP

The C->ASM->MONITOR Loop

When you write your C program, you must have in mind
many things:
Where are my DATA? In which BANK? Will | have BANK conflicts? With whom?

Where are my instructions? In which BANK? Will | have BANK conflicts? With whom?

—> This tells you whether you will have stalls from outside due to the system rather
than the program per se, yet it is very important to know

" Core data stack in L2
Bank conflict on the GRANT ; o " Private BankO
e Instructions in L2 Private
Bank1

« HWCE data in L2
interleaved

data_rvalid_i

data rdata_i

Slow bus access for the VALID None of the master ports in
the Log. Interconnect

0‘% PULP Will create bank conflicts ©

The C->ASM->MONITOR Loop

When you write your C program, you must have in mind many
things:
What is the ISA of my core?

Is my kernel (e.g. MatMul) using all the instructions of my ISA in an optimized way?

—> You check this by generating the assembler and double check the instructions.
Try to reverse what the compiler did as see whether you can do better or not

* |f not, you can use builtins or asm volatile statements to force the use of some
instructions! (Or rewrite properly the C code)

... lliterate #COL/4
Ip.setup x1,a4,stop1 Ip.setup x1,a6,stop1
p.lbu a0,1(a3!) p.lw a1l4(t1!)
p.lbu a1,1(a2!) p.lw ad4(t3!)

stop1: p.mac ad,al,a" stop1: pv.sdotsp.b a7,a1,ad

dSPULP

The C->ASM->MONITOR Loop

When you write your C program, you must have in mind many
things:
What are the performance | should expect?

Can | achieve that performance? Why?
If | don’t have a clue, | should open the waveform and see where the stalls are coming from

How can | solve it? - Back to writing CODE (e.g. loop unrolling)

dSPULP

Hands-On =2 The Dot Product

The dot product is an extremely common kernel in Artificial
Intelligence operations e

RISCY extensions to achieve top performance *"' ",q
We are going to see E -.,h ; :.?2_;‘_. ;
Optimized assembly code that uses - "'-::_."-;.Eg.",:‘:j.-"
the MAC instruction A

Zero-overhead HW-Loop

Automatic increment load/store
Loop unrolling to eliminate stalls
Optimized code that uses the SIMD extensions

dSPULP

Hands-On = The 2D Convolution

The 2D Convolution is the central kernel of Convolutional Neural

Network

RISCY extensions to achieve top performance

We are going to see
Optimized C code that uses
gcc vectors
the shuffle instruction
the dot product
normalization and clip

Q
~—
Image

Register map

S

»PULP

Output N Output N+1
1|2(3|4]|5 11213145
6/7[/8|9]10 m 67,8910
11(12|13|14|15 Iter. 11/12(13|14(15
16/17/18/19/20 1617181920
21|22|23|24|25 \ 21/22/2324(25
1 26(27(28(29|30
/ 1 Byte/Pixel N
/ . AV
5x5 convoluti retired data fresh data
r121234//v'm0ve 6 7 8 9|12
ri3 |6 7 8 9 / move 11 12 13 14| r13
ri4 |11 12 13 14/ move 16 17 18 19| r14
rl5 |16 17 18 19/ move 21 22 23 24/ r15
rlé |21 22 23 24/ Shuffle 10 15 20 25| r16
rl7 |5 10 15 20/ l.lwz 26 27 28 29| r17
rls 25 l.Ib 30| r18

Thanks a lot
* Thanks a lot for your attention
* | hope you enjoyed it ©

* Get ready for the Hands On session

APULP

