
2Integrated Systems Laboratory

1Department of Electrical, Electronic
and Information Engineering

Understanding and working with
PULP

13.06.2019

Pasquale Davide Schiavone

and the PULP team
1Integrated System laboratory, ETH, Zurich, Switzerland
2Energy Efficient Embedded Systems Laboratory, University Of Bologna, Bologna, Italy

||

Near Sensor (aka Edge) Processing

1 ÷ 3 GOPS
1 ÷ 30 mW

Idle: ~1µW
Active: ~ 50mW100 uW ÷ ~10 mW

ü Smart Architecture

ü Parallel Processing

ü Power-saving Design

ü Near-Threshold

ü Low Power Technology

||

PULPissimo Architecture

SoC

APB

CL
K

TI
M

ER

DE
BU

G

SPI M

CAMIF

I2C

UART

µD
M

A

DEBUG

ROM

Logarithmic Interconnect

RISC-VAP
BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

HW
CE

HWCE

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

||

PULPissimo Architecture

• RISC-V based advanced microcontroller
– 512kB of L2 Memory
– 16kB of energy efficient latch-based

memory (L2 SCM BANK)

• Rich set of peripherals:
– QSPI (up to 280 Mbps)
– Camera Interface (up to 320x240@60fps)
– I2C, I2S (up to 4 digital microphones)
– JTAG (Debug), GPIOs,
– Interrupt controller, Bootup ROM

• Autonomous IO DMA Subsystem
(µDMA)

• Power management
– 2 low-power FLLs (IO, SoC)

SoC

APB

CL
K

TI
M

ER

DE
BU

G

SPI M

CAMIF

I2C

UART

µD
M

A

DEBUG

ROM

Logarithmic Interconnect

RISC-VAP
BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

HW
CE

HWCE

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

||

PULP Cluster Architecture

CLUSTER TIGHTLY COUPLED DATA MEMORY

Data
Mem

Data
Mem

Data
Mem

Data
Mem

Data
Mem

Data
Mem

Data
Mem

DMA

Event

Data
Mem

Timer

Pe
rip

he
ra

l I
nt

.

Cl
us

te
r B

us

Logarithmic Interconnect

Shared Instruction Cache

RI5CY
CORE

RI5CY
CORE

RI5CY
CORE

RI5CY
CORE

Shared FPU

RI5CY
CORE

RI5CY
CORE

RI5CY
CORE

RI5CY
CORE

Shared FPU

||

PULP Cluster Architecture

• 8 RISC-V multicore cluster
– 64kB of L1 Memory

• Shared FPU for efficient
resources minimization
– 2 FPU, 1 every 4 cores

• Shared I$
– Optimize cache usage

• Multi-Core event unit for barriers
and clock-gate managment

• DMA for efficient L2ßà L1 data
transfers

CLUSTER TIGHTLY COUPLED DATA MEMORY

Data
Mem

Data
Mem

Data
Mem

Data
Mem

Data
Mem

Data
Mem

Data
Mem

DMA

Event

Data
Mem

Timer

Pe
rip

he
ra

l I
nt

.

Cl
us

te
r B

us

Logarithmic Interconnect

Shared Instruction Cache

RI5CY
CORE

RI5CY
CORE

RI5CY
CORE

RI5CY
CORE

Shared FPU

RI5CY
CORE

RI5CY
CORE

RI5CY
CORE

RI5CY
CORE

Shared FPU

||

The RISC-V PULP cores

||

SoC

APB

CL
K

TI
M

ER

DE
BU

G

SPI M

CAMIF

I2C

UART

µD
M

A

DEBUG

ROM

Logarithmic Interconnect

RISC-VAP
BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

HW
CE

HWCE

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

PULPissimo Architecture

• RISC-V based advanced microcontroller
– 512kB of L2 Memory
– 16kB of energy efficient latch-based

memory (L2 SCM BANK)

• Rich set of peripherals:
– QSPI (up to 280 Mbps)
– Camera Interface (up to 320x240@60fps)
– I2C, I2S (up to 4 digital microphones)
– JTAG (Debug), GPIOs,
– Interrupt controller, Bootup ROM

• Autonomous IO DMA Subsystem
(µDMA)

• Power management
– 2 low-power FLLs (IO, SoC)

||

Different Workload? Different core

RI5CY

Zero-riscy

Micro-riscy

RI5CY+FPU

Ariane

||

Different Workload? Different core

RI5CY

Zero-riscy

Micro-riscy

RI5CY+FPU

Ariane

Now part of under the «IBEX» name

||

Different Workload? Different core

RI5CY

Zero-riscy

Micro-riscy

RI5CY+FPU

Ariane

Going to be part of IP core family

||

RI5CY Processor: our workhorse core

• 4-stage pipeline
– RV32IMFCXpulp
– 70K GF22 nand2 equivalent gate

(GE) + 30KGE for FPU
– Coremark/MHz 3.19
– Includes various extensions

• pSIMD
• Fixed point
• Bit manipulations
• HW loops

• Silicon Proven
– SMIC130, UMC65, TSMC55LP,

TSMC40LP, GF22FDX

• NEW Floating Point Unit:
– Iterative DIV/SQRT (9 cycles)
– Parametrizable latency for MUL, ADD,

SUB, Cast
– Single cycle load, store

https://github.com/pulp-platform/riscv

||

RI5CY simplified pipeline

P
C

IF/
ID

ID
/E
X

E
X/
W
B

PC
gen

Align and
Decompress

Decode
operand

s fwd

Read
RF

AGU

E
X

Instr Memory Data Memory

Write
RF

Instr Address Instr Data Data Address Data

Jumps

Branches

||

PULP Cores Memory Interface (1/2)

§ Request with Address (32bits) and request (1bit) signal
§ Byte Enable (BE) (4bits): byte, short or word memory transaction) in case of Load/Store
§ Write Enable (WE) (1 bit)
§ wdata (32bits): data to write in case of store operations

§ Response with Grant signal and Valid signal
§ The core can be interfaced with multicycle memory accesses
§ Grant comes from the arbiter
§ Valid from the memory subsystem

§ rdata (32bits): data to read. It has to be sampled when the valid signal is high

||

PULP Cores Memory Interface (2/2)

§ Back2Back Memory Transactions

§ Slow Memory Transactions
STALL EX STAGE STALL WB STAGE

||

Xpulp Extentions: General Purposes Extensions 1

• Memory Access Extensions
• Misaligned memory accesses (not ISA extension)

• Load or Store 32/16bit values with non-multiple of 4/2 addresses
• Useful when dealing with packet-data (32bits values holding 2/4 elements)
• It requires 2 access to the memory, data manipulation done in the load-

store-unit
• e.g. LOAD 32bit at 0x0000_0002

• Read from memory higher 16bits at 0x0000_0000
• Read from memory lower 16bits at 0x0000_0004 and pack the

data
• Save instructions (code size) and speed up execution

• Explicit load to 0x0000_0000 and 0x0000_0004, shift and or
operations

lw x2, 0(x10)
lw x3, 4(x10)
slri x2, x2, 16
slli x3, x3, 16
or x3, x3, x2

Misaligned ExtOriginal RISC-V

lw x2, 2(x10)

||

Xpulp Extentions: General Purposes Extensions 2

• Memory Access Extensions
• Post Increment Load/Store

• Automatic register update with computed address
• Useful in array iterations
• Save instructions
• It requires extra write register file port or slower execution

• Register-Register Load/Store (and Post Increment)
• Immediate is only 12bits
• Use register-register address calculation for 32bits offset

lw x2, 4(x10)
lw x3, 4(x12)
addi x10, x10, 4
addi x12, x12, 4
....
LOOP

AutoIncrement Load/Store ExtOriginal RISC-V

lw x2, 4(x10!)
lw x3, 4(x12!)
...
LOOP

||

Xpulp Extentions: General Purposes Extensions 3

• Hardware loops extensions
• HWLs or Zero Overhead Loops to remove branch overheads in for loops.
• Smaller loop benefit more!

• Loop needs to be set up beforehand and is fully defined 3 SP regs by:
• Start address à lp.starti L, Imm12 à START_REG[L] = PC + 2*Imm12
• End address à lp.endi L, Imm12 à END_REG[L] = PC + 2*Imm12
• Counter à lp.count{-,i}, L, {rs1,Imm12} à COUNT_REG[L] = rs1/Imm12
• Short-cut à lp.setup{-,i}, L, {rs1,ImmC}, Imm12

• START_REG[L] = PC + 4, END_REG[L] = PC + 2*Imm12, COUNT_REG[L] = {rs1,ImmC}

• Two sets registers implemented to support nested loops (L=0 or 1)

• Performance:
• Speedup can be up to factor 2! mv x5, 0

mv x4, 100
Lstart:
addi x4, x4, -1
nop
nop

bne x4, x5, Lstart

HW Loop ExtOriginal RISC-V
lp.setupi 100, Lend
nop
Lend: nop

||

Xpulp Extentions: Bit Manipulation

• Bit manipulation extensions
• RISC-V reserved the “RVB” extensions but it is still an on-going topic
• PULP developed its own bit-manipulation and possibly will align with

RVB
• Contribution to the official task in the RISC-V community

• Bit Manipulation instructions list
• Extract N bits starting from M from a word and extend (or not) with sign
• Insert N bits starting from M in a word
• Clear N bits starting from M in a word
• Set N bits starting from M in a word
• Find first bit set
• Find last bit set
• Count numbers of 1 (popcount)
• Rotate

mv x5, 0
mv x7, 0
mv x4, 32
Lstart:
andi x6, x8, 1
add x7, x7, x6
addi x4, x4, 1
slri x8, x8, 1

bne x4, x5, Lstart

BitMan ExtOriginal RISC-V

p.cnt x8, x8

||

Xpulp Extentions: DSP

• DSP extensions
• General purposes
• ABS, CLIP/Saturation
• MIN, MAX
• MAC and MSU

• Fixed Point Support
• ADD and SUB with normalization and round
• MUL and MAC with normalization and round

§Possibility to share some resources
§ ABS reuses the adder and comparator in the ALU
§ Clip adds a comparator but reuses adder and previous comparator
§ Normalization done by connecting adder output to the shifter
§ Round done by exploiting multi-operand adders

add x4, x4, x5
addi x4, x4, 1
slri x4, x4, 1

DSP ExtOriginal RISC-V
p.addRN x4, x5, x5, 1

||

Xpulp Extentions: packed-SIMD 1/4

• packed-SIMD extensions
• RISC-V reserved the “RVP” extensions but it is still an on-

going topic
• It also includes DSP extensions

• Differently from “RVV” vectorial extensions, vectors are packet
to the integer RF
• Make usage of resources the best in performance with little overhead
• Target for embedded systems, RVV is for high performance

• pSIMD in 32bit machines
• Vectors are either 4 8bits-elements or 2 16bits-elements

• pSIMD instructions
Computation add, sub, shift, avg, abs, dot product

Compare min, max, compare

Manipulate extract, pack, shuffle

||

Xpulp Extentions: packed-SIMD 2/4

• Same Register-file
• The instruction encode how to interpret the content of the register

add rD, rs1, rs2 rD = 0x03020100 + 0x0D0C0B0A

add.h rD, rs1, rs2 rD[0] = 0x0100 + 0x0B0A
rD[1] = 0x0302 + 0x0D0C

add.b rD, rs1, rs2 rD[0] = 0x00 + 0x0A
rD[1] = 0x01 + 0x0B
rD[2] = 0x02 + 0x0C
rD[3] = 0x03 + 0x0D

0x03 0x02 0x01 0x00

0x0D 0x0C 0x0B 0x0A

rs1

rs2

||

Xpulp Extentions: packed-SIMD 3/4

• HW reuse for small overhead
• Vector modes:
• bytes, halfwords, word
§ 4 byte operations
§ With byte select

§ 2 halfword operations
§ With halfword select

§ 1 word operation
§ Play with carry chain

§ 32bit adder à 35bit adder
§ Vector halfword sub à Carry = co, 1, co, 1
§ Vector byte sub à Carry = 1, 1, 1, 1
§ word sub à Carry = co, co, co, 1

Vectorial Adder

||

§ Shuffle instructions
§ In order to use the vector unit the elements have to be aligned in the

register file
§ Shuffle allows to recombine bytes into 1 register

§ pv.shuffle2.b rD, rA, rB
rD{3} = (rB[26]==0) ? rA:rD {rB[25:24]}
rD{2} = (rB[18]==0) ? rA:rD {rB[17:16]}
rD{1} = (rB[10]==0) ? rA:rD {rB[9: 8]}
rD{0} = (rB[2]==0) ? rA:rD {rB[1: 0]}

§ With rX{i} = rX[(i+1)*8-1:i*8]

Mask bits

rD =

rD

rA

rB

Xpulp Extentions: packed-SIMD 4/4

||

ISA Extensions: Putting it All Together

for (i = 0; i < 100; i++)
d[i] = a[i] + b[i];

mv x5, 0
mv x4, 100
Lstart:
lb x2, 0(x10)
lb x3, 0(x11)
addi x10,x10, 1
addi x11,x11, 1
add x2, x3, x2
sb x2, 0(x12)
addi x4, x4, -1
addi x12,x12, 1

bne x4, x5, Lstart

Baseline

11 cycles/output

mv x5, 0
mv x4, 100
Lstart:
lb x2, 1(x10!)
lb x3, 1(x11!)
addi x4, x4, -1
add x2, x3, x2
sb x2, 1(x12!)

bne x4, x5, Lstart

Auto-incr load/store

8 cycles/output

lp.setupi 100, Lend
lb x2, 1(x10!)
lb x3, 1(x11!)
add x2, x3, x2

Lend: sb x2, 1(x12!)

HW Loop

5 cycles/output

lp.setupi 25, Lend
lw x2, 4(x10!)
lw x3, 4(x11!)
pv.add.b x2, x3, x2

Lend: sw x2, 4(x12!)

Packed-SIMD

1,25 cycles/output

||

ALU architecture

§ Advanced ALU for Xpulp
extensions

§ Optimized datapath to reduce
resources

§ Multiple-adders for round
§ Adder followed by shifter for

fixed point normalization
§ Clip unit uses one adder as

comparator and the main
comparator

IIS - PULP66

||

MUL architecture
§ (blue) 16x16 with sign selection for

short multiplications [with round and
normalization]. 5 cycles FSM for
higher 64-bits (mulh* instructions)

§ (purple) One single cycle mac unit
that performs MAC, MSU and MUL

§ (red) short parallel dot product

§ (grey) byte parallel dot product

§ Clock gating to reduce switching
activity between the integer and
SIMD multiplier

||

Dot Product Multiplier

§ Dot Product: (half word example)
C[31:0] = A[31:16]*B[31:16] + A[15:0]*B[15:0] + C[31:0]

=> 2 multiplications, 1 addition, 1 accumulation in 1 cycle!

32 bit32 bit32 bit

35:2 compressor

Partial Product
Generator

||

2D Convolution with Xpulp Extensions:
performance + less memory pressure

§ Convolution in registers
§ 5x5 convolutional filter

||

2D Convolution with Xpulp Extensions:
performance + less memory pressure

§ 7 Sum-of-dot-product
§ 4 move
§ 1 shuffle
§ 3 lw/sw
§ ~ 5 control instructions

§ Convolution in registers
§ 5x5 convolutional filter

||

2D Convolution with Xpulp Extensions:
performance + less memory pressure

§ 7 Sum-of-dot-product
§ 4 move
§ 1 shuffle
§ 3 lw/sw
§ ~ 5 control instructions

20 instr. / output pixel à Scalar version >100 instr. / output pixel

§ Convolution in registers
§ 5x5 convolutional filter

||

PULP core examples – RV32IMC vs RV32IMCXpulp General code

start_loop:
addi t3,t5,-32
c.mv a7,s2 //address of matB
addi t1,t4,-32
lp.setupi x0,32,stop0
c.mv a3,t1 //address of matA
c.mv a2,a7
c.li a5,0
sub a4,t4,t1 //loop count1
lp.setup x1,a4,stop1 //hw loop
p.lbu a0,1(a3!) //load byte with post increment
p.lbu a1,32(a2!)
p.mac a5,a0,a1 //mac
stop1: andi a5,a5,255
p.sb a5,1(t3!) //store result with post increment
stop0: c.addi a7,a7,1
addi t5,t5,32
addi t4,a3,32
bne t5,t6,start_loop

start_loop:
addi a6,t1,-32
c.mv a7,t5 //address of matA
addi t3,a0,-32
loop0:
c.mv a4,t3 //address of matA
c.mv a2,a7
c.li a5,0
loop1:
lbu a3,0(a4) //load byte
lbu a1,0(a2)
c.addi a4,a4,1 //post increment
mul a3,a3,a1 //mul
c.add a5,a5,a3 //acc after mul
andi a5,a5,255
c.addi a2,a2,1
bne a4,a0,loop1 // branch penalty
sb a5,0(a6)
c.addi a6,a6,1
addi a7,a7,32
bne a6,t1,loop0 //branch penalty
addi t1,a6,32
addi a0,a4,32
bne t1,t4,start_loop

• 2 bytes saved
(X instructions not
compressed)

• Number of instructions
reduced (21 vs 18)

• Removed branch penalties

||

PULP core examples – RV32IMCXpulp General code vs Opt code

…
lp.setup x1,a4,stop1
p.lbu a0,1(a3!)
p.lbu a1,1(a2!)
stop1: p.mac a5,a0,a1
….

• The innermost loop has 4x less iterations
• 4 bytes per matrix are loaded as a 32b word
• Dot product with accumulation performs in 1 cycle 4 macs

… //iterate #COL/4
lp.setup x1,a6,stop1
p.lw a1,4(t1!) //load 4-bytes with post inc
p.lw a5,4(t3!)
stop1: pv.sdotsp.b a7,a1,a5 //4 mac
….

||

PULP cores Interrupts

• Asynchronous events
• If interrupt is taken, jump to xtvec
• xtvec holds the base address to jump
• + 4*interrupt ID for computing the actual address

• No delegation supported
• All interrupts are handled in machine mode

• External interrupt controller interact with peripheral
subsystem and SW events

||

PULP cores interrupts protocol

• Asynchronous protocol between CORE and INTController
• The core takes few cycles before jumping
• The external interrupt controller may change ID number

• e.g. higher priority requests from peripherals
• The core tells the interrupt controller which ID has been used to calculate the

address of the interrupt vector table
• The interrupt controller clears the taken ID

Interrupt
Controller PULP Core

5

5

req
id

ack
id

||

PULP cores interrupts protocol – timing diagram

||

Wait For Interrupt & Power manager

• WFI instruction disables the clock
• Dynamic power saved when core is in IDLE
• Taken or Not interrupts wake up the core that starts from the instruction after WFI
• The core waits for all the inflight instructions before switching off the clock
• eg if a load is waiting for the valid signal, long divisions, floating point mac, debug

• The pipeline and state registers are clock gated when not used
• The ALU, Integer Multiplier and Dot Product units have different operands registers
• In the ID stage, the decoded instruction can be part of one of this 3 domains, the others 2 are

clock gated

||

Performance Counter 1/3

§ Registers in the CSR space that counts events
§ Number of cycles and number of retired instructions used to calculate

“IPC – Instructions per cycle”
§ Performance counters used for counting the stalls

§ Load stalls
§ Value not yet returned from memory

PC IF ID EX WB

A+4 to Imem Y from Imem[A] add needs
value from

lw à STALL

addr to
Dmem

-

A+8 to Imem Y from Imem[A] add needs
value from
lw à FWD

Bubble D from
Dmem

A+12 to Imem Z from Imem[A+4] decode Y add

//LOAD STALL
lw x10, 0x0(x2)
add x10, x10, 0x4

||

Performance Counter 2/3

§ Jump stalls (jalr)
§ Stall to break path from EX stage to Imem

PC IF ID EX WB

A+4 to Imem Y from Imem[A] jalr needs
x10à STALL

mul -

x10+0x4 to
Imem

Bubble Jump to
x10+0x4

- -

//JALR STALL
mul x10, x10, x10
jalr x11, x10, 0x4

||

Performance Counter 3/3

§ Other performance counters used to monitor
§ Number of cycles lost for fetching (Instruction Cache for instance)
§ Number of load, stores, branches, taken branches, jumps and compressed instructions

Address Perf Counter Description
0x782 LD_STALL Number of load data hazards
0x783 JR_STALL Number of jump register data hazards
0x784 IMISS Cycles waiting for instruction fetches, i.e. number of

instructions wasted due to non-ideal caching
0x785 LD Number of data memory loads executed.

Misaligned accesses are counted twice
0x786 ST Number of data memory stores executed.

Misaligned accesses are counted twice
0x787 JUMP Number of unconditional jumps (j, jal, jr, jalr)
0x788 BRANCH Number of branches.

Counts taken and not taken branches
0x789 BTAKEN Number of taken branches.
0x78A RVC Number of compressed instructions executed

||

Example Performance Counter

…enable perf counters…
csrw 0x782,x0 //reset perf counter LD_STALL
// loop 100 times over load stall
lp.setupi x1,100,stop_loop
lw x10,4(x14!)
stop_loop: add x11,x11,x10 //stall due to load dependency
csrr x15,0x782 // à x15 contains 100

||

Simulation Tracer

• For every instruction executed, the core prints on a file the
• “TIME STAMP – PC – INSTRUCTION – OPERANDs and RESULTs”

PC

Instr encoding

Disassembled instruction

Relative jumps/branch target

§ Trace file (build/pulpissimo/trace_core_1f_0.log):

||

Hybrid Logaritmic Interconnect

||

SoC

APB

CL
K

TI
M

ER

DE
BU

G

SPI M

CAMIF

I2C

UART

µD
M

A

DEBUG

ROM

Logarithmic Interconnect

RISC-VAP
BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

HW
CE

HWCE

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

PULPissimo Architecture

• RISC-V based advanced microcontroller
– 512kB of L2 Memory
– 16kB of energy efficient latch-based

memory (L2 SCM BANK)

• Rich set of peripherals:
– QSPI (up to 280 Mbps)
– Camera Interface (up to 320x240@60fps)
– I2C, I2S (up to 4 digital microphones)
– JTAG (Debug), GPIOs,
– Interrupt controller, Bootup ROM

• Autonomous IO DMA Subsystem
(µDMA)

• Power management
– 2 low-power FLLs (IO, SoC)

||

XBAR BRIDGE

X
B

A
R

 L2

LINT 2
APB

LINT 2
AXI32

2 3 0

CORE_DATA DBG_RX UDMA_RX UDMA_TX CORE_INSTR

1

AXI64_to_LINT32

ROMAPB AXI32 L2_PRI[0] L2_PRI[1]

Interleaved L2

Non Interleaved L2

read read write write

64bit
Axi bus

Master port (initiator)

Slave port (target)

HWCE x 4

|| 27.02.2019 91

D

Memory
Cut

Memory Bank

Memory
CutMemory

Cut

Memory
Cut

Memory Bank

Memory
CutMemory

Cut

Memory
Cut

Memory Bank

Memory
CutMemory

Cut

Memory
Cut

Memory Bank

Memory
CutMemory

Cut

RX
Channels

TX
ChannelsPeripheral

Peripheral

Peripheral
uDMA Subsystem CPU Subsystem

I

APB Subsystem

Low latency interconnect

APB Bridge

L2 multiport w/interleaving support

P
W

M

C
LK

S
O

C

• Low latency interconnect with word level interleaving to reduce contention
• 4 PORT memory capable of handling maximum BW of 4*32*Freq
• High performance plugs to the processing subsystem

Interleaved banks

Interconnect performance

||

XBAR BRIDGE

X
B

A
R

 L2

LINT 2
APB

LINT 2
AXI32

2 3 0

CORE_DATA DBG_RX UDMA_RX UDMA_TX CORE_INSTR

1

AXI64_to_LINT32

ROMAPB AXI32 L2_PRI[0] L2_PRI[1]

Interleaved L2

Non Interleaved L2

read read write write

64bit
Axi bus

HWCE x 4

UDMA_RX AND CORE_DATA
WANT TO WRITE TO BANK 1

OF INTERLEAVED L2.
ONE IS STALLED, THE OTHER
MAKES THE TRANSACTION

(BANK CONFLICT)

||

Peripheral Interconnect

||

SoC

APB

CL
K

TI
M

ER

DE
BU

G

SPI M

CAMIF

I2C

UART

µD
M

A

DEBUG

ROM

Logarithmic Interconnect

RISC-VAP
BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

HW
CE

HWCE

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

PULPissimo Architecture

• RISC-V based advanced microcontroller
– 512kB of L2 Memory
– 16kB of energy efficient latch-based

memory (L2 SCM BANK)

• Rich set of peripherals:
– QSPI (up to 280 Mbps)
– Camera Interface (up to 320x240@60fps)
– I2C, I2S (up to 4 digital microphones)
– JTAG (Debug), GPIOs,
– Interrupt controller, Bootup ROM

• Autonomous IO DMA Subsystem
(µDMA)

• Power management
– 2 low-power FLLs (IO, SoC)

||

PERIPHERAL BUS

APB (COMING FROM HYBRID LOG INT)

ADV.

TIMER
FLL GPIO UDMA

SOC

CTRL
HWCEEVENT INTC DEBUG TIMER

0x1A1_00000

Only one APB request! If

more, stalled in the HYBRID

LOGARITMIC INTERCONNECT

(AS BANK CONFLICT)

Peripheral Bus

||

µDMA: An Autonomous I/O
Subsystem

|| 27.02.2019 100

46Mbit/s
320x240@25fps

3Mbit/s per
channel

QuadSPI up to
400Mbit/s

New SD standard up
to 800Mbit/sHIGH

PERFORMANCE

uC

RF
Transceivers
> 100Mbit/sPeak BW

> 1Gbit/s

Up to 2.4GBit/s

I/O requirements

||

SoC

APB

CL
K

TI
M

ER

DE
BU

G

SPI M

CAMIF

I2C

UART

µD
M

A

DEBUG

ROM

Logarithmic Interconnect

RISC-VAP
BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

HW
CE

HWCE

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

PULPissimo Architecture

• RISC-V based advanced microcontroller
– 512kB of L2 Memory
– 16kB of energy efficient latch-based

memory (L2 SCM BANK)

• Rich set of peripherals:
– QSPI (up to 280 Mbps)
– Camera Interface (up to 320x240@60fps)
– I2C, I2S (up to 4 digital microphones)
– JTAG (Debug), GPIOs,
– Interrupt controller, Bootup ROM

• Autonomous IO DMA Subsystem
(µDMA)

• Power management
– 2 low-power FLLs (IO, SoC)

||

uDMA Subsystem

µDMA core

UDMA_RXUDMA_TXAPB

PERIPHERAL #ID

CONFIG Registers

PERIPH RX PROTOCOL

PERIPH TX PROTOCOL

cfg_data

tx_data

rx_data

FILTER

CONFIG Registers

DSP

cfg_data

2xtx_data

rx_data

stream

uDMA Subsystem

||

Offload pipeline

27.02.2019 111

Offload
Start DMA

I/O
CPU
Acc. DMA

TIME

DOUBLE BUFFERING

RX CHn
Buffer0

RX CHn
Buffer1

RX CHn
Buffer0

RX CHn
Buffer1

Offload
Start DMA

Copy
L2 to Acc

Offload
Start DMA

Copy
L2 to Acc

Process
Buffer0

Process
Buffer1

Process
Buffer0Acc. Processing

Copy
L2 to Acc

§ Efficient use of system resources
§ HW support for double buffering allows continuous data

transfers
§ Multiple data streams can be time multiplexed

||

Hardware Accelerator for
Neural Networks

||

SoC

APB

CL
K

TI
M

ER

DE
BU

G

SPI M

CAMIF

I2C

UART

µD
M

A

DEBUG

ROM

Logarithmic Interconnect

RISC-VAP
BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

HW
CE

HWCE

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

PULPissimo Architecture

• RISC-V based advanced microcontroller
– 512kB of L2 Memory
– 16kB of energy efficient latch-based

memory (L2 SCM BANK)

• Rich set of peripherals:
– QSPI (up to 280 Mbps)
– Camera Interface (up to 320x240@60fps)
– I2C, I2S (up to 4 digital microphones)
– JTAG (Debug), GPIOs,
– Interrupt controller, Bootup ROM

• Autonomous IO DMA Subsystem
(µDMA)

• Power management
– 2 low-power FLLs (IO, SoC)

||

XNOR Neural Engine

01.10.18XNE 117

CTRL FSM UCODE
PROC

REG FILE
SLAVE

INPUT
SOURCE

WEIGHT
SOURCE

OUTPUT
SINK

ST
AT

IC
 M

UX
IN

G

INPUT BUFFER
TP-bit

XNOR & POPCOUNT
TP xnor + reduction tree to 16-bit

POPCOUNT ACCUMULATORS
TP x 16-bit

THRESHOLD
TP-bit

1. Motivation
2. BNNs

3. Architecture
4. Results

TP
/32

 x
32

-b
it

m
em

or
ym

as
te

r

TP-bit
stream

32-bit
periph target

||

XNOR Neural Engine in PULPissimo

RISCY

Ibuf
/ I$

instr data

Event Unit

Tightly Coupled Data Memory Interconnect

Mem
Bank

Mem
Bank

Mem
Bank

Mem
Bank

Mem
Bank

Mem
Bank

Mem
Bank

Mem
Bank

uDMA

APB / Peripheral Interconnect

Clock / Reset
Generator Timer Power

Controller
Debug

Unit

FLLs Always-On

I/O
intfs

UART
SPI
I2S
I2C

SDIO
CPI

JTAG

XNOR
Neural
Engine

STREAMER

ENGINE

CTRL

1. Motivation
2. BNNs

3. Architecture
4. Results

||

Operation in time

GET
FEAT

GET
WEIGHT

GET
WEIGHT

REG
FEAT

XNOR
ACCUM

XNOR
ACCUM

GET
FEAT

GET
WEIGHT

GET
WEIGHT

REG
FEAT

XNOR
ACCUM

XNOR
ACCUM

PUSH
CONV

UPDATE
IDX

XNOR
CLEAR

UPDATE
IDX

GET
FEAT

GET
WEIGHT

REG
FEAT

UPDATE
IDX

PROG
CONTROLLER

REG FILE

UCODE
PROCESSOR

XNOR
POPCOUNT

FEAT
REGISTER

STREAMER

01.10.18XNE 119

||

Interrupt Controller and Event
Generator

||

SoC

APB

CL
K

TI
M

ER

DE
BU

G

SPI M

CAMIF

I2C

UART

µD
M

A

DEBUG

ROM

Logarithmic Interconnect

RISC-VAP
BGPIO

I2S

SDIO EV
EN

T

So
C

CT
RL

IN
TC

HW
CE

HWCE

Pa
d

Co
nt

ro
l

L2
BankL2

BankL2
BankL2

Bank
Int

erl
ea

ved
 ba

nks

L2
Bank

L2
Bank

private banks

PULPissimo Architecture

• RISC-V based advanced microcontroller
– 512kB of L2 Memory
– 16kB of energy efficient latch-based

memory (L2 SCM BANK)

• Rich set of peripherals:
– QSPI (up to 280 Mbps)
– Camera Interface (up to 320x240@60fps)
– I2C, I2S (up to 4 digital microphones)
– JTAG (Debug), GPIOs,
– Interrupt controller, Bootup ROM

• Autonomous IO DMA Subsystem
(µDMA)

• Power management
– 2 low-power FLLs (IO, SoC)

||

PULP interrupts controller (INTC)

• It generates interrupt requests from 0 to 31
• Mapped to the APB bus
• Receives events in a FIFO from the SoC Event Generator (i.e.

from peripherals)
• Unique interrupt ID (26) but different event ID
• Mask, pending interrupts, acknowledged interrupts, event id

registers
• Set, Clear, Read and Write operations by means of load and

store instructions (memory mapped operations)
• Interrupts come from:
• Timers
• GPIO (rise, fall events)
• HWCE
• Events i.e. uDMA

||

EVT ID

VALID

READY

TO
INTC FIFO

EVT ID

VALID

READY

TO
PERIPHS

EVENTS FROM
SYSTEM

• GPIO
• TIMERS
• HWCE
• uDMA

SE
RI

AL
IZ

ER

A
C

C
.

SO
C

PE
R

.

M
AS

KI
NG

 U
NI

T

EVENT DOUBLE
BUFFERING

AP
B

EV
T.

 C
FG

HI
G

H
PR

I.
SE

L.

8

88

FROM APB

PULP Event Generator (EVENT)

uDMA is waiting
for some event –

e.g. SPI starts
when GPIO rises

||

Interrupts Source

EVENTS FROM
SYSTEM

• GPIO
• TIMERS
• HWCE

Diffe
ren

t

fro
m be

for
e

23

EVT ID

VALID

READY

EVENT FROM
EVENT GENERATOR

M
AS

KI
NG

 U
NI

T
an

d
PR

IO
RI

TY
 D

EC
O

DE
R

SW EVENTS
(INTC APB Registers)

8

PULP Core

5

5

req
id

ack
id

||

TestBench

||

PULP TestBench

• It reads the compiled file (ADDRESS – INSTRUCTION)
• It sets with JTAG configuration registers
• It loads via JTAG the compiled file into the memory
• It writes to the FETCH_ENABLE register in the APB (Soc Control)
• Now the core starts running the application
• It waits for the END-OF-COMPUTATION bit
• When the core returns from the “main” function, it writes to a specific memory

location in the APB (SoC Control) the word “1XXX_XXXX”, where 1 indicates
the core finished its program and XXX_XXXX is the returned value
(e.g. “return 0;”)

• It reports an error if XXX_XXXX is not 0

||

HANDS-ON

||

PULPissimo on GitHub

• PULPissimo is available @ https://github.com/pulp-platform/pulpissimo
• git clone git@github.com:pulp-platform/pulpissimo.git

||

Dependecies

• “ips_list.yml” holds the needed sub-IPs.

• “update-ips” to download them

• iptools downloads the IPs recursively

• iptools generates compilation scripts and [synthesis] scripts

• “ips” folder contains downloaded IPs

• “rtl” folder contains PULPissimo RTL, testbench, etc

||

PULP IPs

• Every IP is a different GIT repository
• Easier to maintain and creates little mess on many-people

projects
• Every IP has one or more maintainers of the PULP group

• “src_files.yml” for each IP to list the RTL files
• used to generate scripts, modelsim library names, options, etc

• PULPissimo IPs are also available on GitHub

• make sdk to download and install the PULP SDK

||

PULP SDK

• The SDK contains all the tools and runtime support for
PULP based microcontrollers

• The SDK contains from low-level bare-metal procedure for
setting the PULP cores and peripherals (e.g. crt0) all the
way up to a set of higher level functions (API) to help
applications developers to leverage all the supported
features

||

Environment Variable

• VSIM_PATH points to your pulpissimo/sim folder
• Execute make clean lib build opt

• PULP_RISCV_GCC_TOOLCHAIN to your bin folder of the PULP
GCC

||

Compile & Simulate PULP
• PULP compilation and simulation scripts and flow are based on

modelsim
• To compile
• cd pulpissimo/sim
• make clean lib build opt
• To execute an application
• cd yourapplicationfolder
• make clean all (to compile it)
• make dis > dis.s (to generate the object dump)
• make run gui=1 (to run modelsim with GUI)
• make run
• Assembler, Simulation Trace and Performance counter to analyze

performance

||

Programming PULP

• When programming for embedded system, the very first
thing that should come to your mind is
• LIMITED RESOURCES
• It is completely different to write application for your personal PC than a microcontroller
• You MUST know the total memory available, the architecture, the instructions of the

core etc
• In the context of embedded programming, you have the possibility to finely optimize all

the SW stack to leverage your HW at the best

• Some tips are coming J

||

The C->ASM->MONITOR Loop

• When you write your C program, you must have in mind
many things:
• Where are my DATA? In which BANK? Will I have BANK conflicts? With whom?
• Where are my instructions? In which BANK? Will I have BANK conflicts? With whom?
• à This tells you whether you will have stalls from outside due to the system rather

than the program per se, yet it is very important to know

SoC

ROM

Logarithmic Interconnect

RISC-VHWCE

L2
BankL2

BankL2
BankL2

Bank
Interle

ave
d banks

L2
Bank

L2
Bank

private banks

• Core data stack in L2
Private Bank0

• Instructions in L2 Private
Bank1

• HWCE data in L2
interleaved

None of the master ports in
the Log. Interconnect
Will create bank conflicts J

Bank conflict on the GRANT

Slow bus access for the VALID

||

The C->ASM->MONITOR Loop

• When you write your C program, you must have in mind many
things:
• What is the ISA of my core?
• Is my kernel (e.g. MatMul) using all the instructions of my ISA in an optimized way?
• à You check this by generating the assembler and double check the instructions.

Try to reverse what the compiler did as see whether you can do better or not
• If not, you can use builtins or asm volatile statements to force the use of some

instructions! (Or rewrite properly the C code)

…
lp.setup x1,a4,stop1
p.lbu a0,1(a3!)
p.lbu a1,1(a2!)
stop1: p.mac a5,a0,a1
….

… //iterate #COL/4
lp.setup x1,a6,stop1
p.lw a1,4(t1!)
p.lw a5,4(t3!)
stop1: pv.sdotsp.b a7,a1,a5
….

I am a
cool GUY

||

The C->ASM->MONITOR Loop

• When you write your C program, you must have in mind many
things:
• What are the performance I should expect?
• Can I achieve that performance? Why?
• If I don’t have a clue, I should open the waveform and see where the stalls are coming from

• How can I solve it? à Back to writing CODE (e.g. loop unrolling)

||

Hands-On à The Dot Product

• The dot product is an extremely common kernel in Artificial
Intelligence operations
• RISCY extensions to achieve top performance

• We are going to see
• Optimized assembly code that uses
• the MAC instruction
• Zero-overhead HW-Loop
• Automatic increment load/store
• Loop unrolling to eliminate stalls
• Optimized code that uses the SIMD extensions

||

• The 2D Convolution is the central kernel of Convolutional Neural
Network
• RISCY extensions to achieve top performance

• We are going to see
• Optimized C code that uses
• gcc vectors
• the shuffle instruction
• the dot product
• normalization and clip

Hands-On à The 2D Convolution

||

Thanks a lot

Integrated Systems Laboratory

134

• Thanks a lot for your attention

• I hope you enjoyed it J

• Get ready for the Hands On session

