ETH zürich

Basilisk: Achieving Competitive Performance with Open EDA Tools on an Open-Source Linux-Capable RISC-V SoC

Philippe Sauter¹, Thomas Benz¹, Paul Scheffler¹, Zerun Jiang¹, Beat Muheim¹, Frank K. Gürkaynak¹, Luca Benini^{1,2} ¹Integrated Systems Laboratory, ETH Zurich ²Department of Electrical, Electronic, and Information Engineering, University of Bologna

1 Introduction and Motivation

- OS EDA flow profits multiple communities
 - Academia: NDA-free and open collaboration
 - Education: Limit-free understanding of the EDA tools
 - Industry: Transparent chain-of-trust, more skilled personal
- OS EDA flows exist, achieving **good** results for **small** designs
 - Flows and tools show cracks with multi-million-gate designs

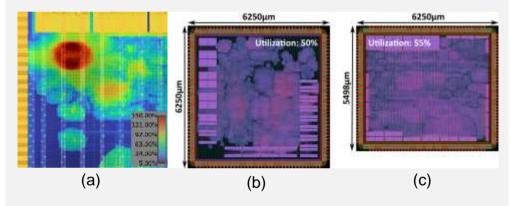
Cheshin

- No end-to-end open Linux-capable SoC yet
- Basilisk SoC
 - Cheshire SoC platform^[1]
 - Linux-capable
 - CVA6 64-bit RISC-V
 - USB 1.1 host
 - VGA display
 - External, digital-only
 DRAM interface
 - Implement Basilisk end-to-end open (Yosys, OpenROAD)
 - Improving OS EDA tools and flow along the journey

SV2V

Yosys

Realistic benchmark for OS EDA tools to grow


2 Synthesis Improvements

- Part-select operation in Yosys
 - Prior to v0.34: barrel **shifter**
 - More complex than mux
 - High-cost gate-level netlist
 - **Contributed** fix in v0.36
 - Opt. pass inferring MUX

	Code	Graphical
e	out(sel)	
,	out[9*sel+:9]	
s vel	<pre>\$shiftx(.A(out), .B(-9+sel), .Y(out_sel));</pre>	
s ic	<pre>module shiftx(); \$MUX()</pre>	selváblaði

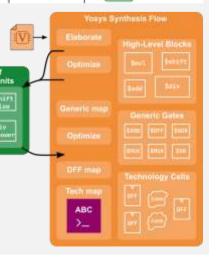
3 Place & Route Improvements

- Focus on OpenROAD's flow scripts
 - Improved sequence of commands
 - Hyperparameter tuning to reduce density hotspots
 - Density force: push cells to achieve target density
 - Wire force: attract connected cells to reduce wire length

- (a) example of over 100% density at the site of the bootrom
- Untuned (b) and tuned (a) hyperparameters
 - Our flow results in more uniform density without hotspots

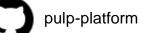
4 Results and Conclusion

- Improve flow:
- **1.6x** in area
- 2.3x in timing
- Taped Basilisk in May 2023
 - First end-to-end open Linux-capable SoC


	Yosys-0.33	MUX	ABC	LAU
Logic area	1.8 MGE	1.4 MGE	1.1 MGE	1.1 MGE
Timing	33 MHz	37 MHz	71 MHz	77 MH2
Logic levels *	182 LL	149 LL	54 LL	51 LL
Runtime ^b	5.4 h	2.8 h	2.2 h	2.2 h
Peak RAM ^c	217 GB	105 GB	76 GB	75 GB

• 1.5x in area, 2.9x in RAM

- ABC: optimized scripts
 - Lazy man's synthesis
 - Cheaper optimization run multiple times
 - 2.3x in timing
- Library of arithmetic units^[2,3]
 - Arithmetic operator replacement
 - Optimized open-source library^[3]


- Room for improvement
 - Timing-driven synthesis
 - Automatic hyperparameter tuning

References

- Ottaviano et al., Cheshire: A Lightweight, Linux-Capable RISC-V Host Platform for Domain-Specific Accelerator Plug-In, IEEE TCAS-II, 2023
- 2. VHDL Library of Arithmetic Units: https://iis-people.ee.ethz.ch/~zimmi/arith_lib.html
- $\label{eq:linear} \textbf{3. Library of arithmetic units: https://github.com/pulp-platform/ELAU}$

