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Continual Learning: on-site samples and offline data belong to

different distributions. Intelligent models must expand their

knowledge domain and remember past experiences.

Federated Learning: intelligent agents must share and build

knowledge without exchanging sensitive information.

On-Device Learning: Ultra-low-power SoCs have reduced on-

chip memory, computational resources, and device lifetime.

The extreme edge hardware-associated costs must be

addressed without sacrificing recognition accuracy.

Mean Output Loss: regularize past vs. novel classes
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FedProx [1]: regularize local vs. global model                             
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DSICNet [2] with 30 kparameters:

• int8-quantized backbone;

• fp32 layers trainable via backpropagation.

DSICNet is pretrained on CIFAR100. The base session: 

learning four faces from LFW [6]. 1st and 2nd sessions: 

continually learning three new faces per session, each nano-

drone node exposed to one face per session.

We need only 28 samples/class to recognize 10 faces with 

46% accuracy, 2x better than naïve fine-tuning, only 12% below 

an ideal offline scenario.

The local training latency is only 178 ms, yet it takes the nodes 

1.7 s to exchange the weights, for a total of 10.5 s per epoch.

ODFCL paves the way towards multi-agent lifelong learning

at the extreme edge. Ongoing work includes:

• deploying larger networks (exhausting the remaining 400 kB of

RAM) to improve the baseline accuracy;

• improving the continual learning strategy to reduce forgetting;

• optimizing the communication protocol to improve latency.
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24% ↑ 

12% ↓

Operating conditions f = 240 MHz

V = 650 mV

f = 370 MHz 

V = 800 mV

Latency [ms] 178.4 117.6

Power [mW] 24.4 53.1

Energy [mJ] 4.3 6.2

ODL peak memory [kB] 29

FL memory [kB] 24

GAP9Shield[3] 

integrating the 

GAP9 SoC with 

10 RISC-V 

cores. The shield 

and the UWB 

Loco Positioning 

Deck [4] are 

mounted on the 

Craziflie 2.1 

nano-drone [5]. 
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