

PULP PLATFORM Open Source Hardware, the way it should be!

ETH zürich

TechWeek 2024 Share, Inspire, Innovate!

Open Platforms for the Embodied AI era

Luca Benini <luca.Benini@unibo.it,lbenini@ethz.ch>

Embodied Al

Start Small: Open Platform for Autonomous Nano-Drones

Advanced autonomous drone

[1] A. Bachrach, "Skydio autonomy engine: Enabling the next generation of autonomous flight," IEEE Hot Chips 33 Symposium (HCS), 2021

https://www.skydio.com/skydio-2-plus

- 3D Mapping & Motion Planning
- Object recognition & Avoidance
- 0.06m2 & **800g of weight**
- Battery Capacity **5410mAh**

https://www.bitcraze.io/products/crazyflie-2-1

- Smaller form factor of 0.008m2
- Weight 27g (30X lighter)
- Battery capacity 250mAh (20X smaller)

Can we fit sufficient intelligence in a 30X smaller payload, 20X lower energy budget?

Achieving True Autonomy on Nano-UAVs

Multiple, complex, heterogeneous tasks at high speed and robustness fully on board

Obstacle avoidance & Navigation

Multi-GOPS workload at extreme efficiency $\rightarrow P_{max}$ 100mW

ETH zürich

Multiple Heterogeneous Accelerators

Brain-inspired: Multiple areas, different structure different function!

Multiple Heterogeneous Accelerators

The Kraken: an "Extreme Edge" Brain

- RISC-V Cluster (8 Cores + 1)
- CUTIE dense ternary neural network accelerator
- SNE energy-proportional spiking neural network accelerator

[Di Mauro HotChips22]

CUTIE: Perception from Nyquist (Sampled) Sensors

Output channel compute unit (OCU)

- Completetely Unrolled Neural Inference Engine: KxK window, all input channels, cycle-by-cycle sliding
- One OCU computes one output activation per cycle!

ETH zürich

- Zeros in weights and activations, spatial smoothness of activations reduce switching activity
- 96 OCUs, 96 Input channels, 3x3 kernels: 96 * 96 * 3 * 3 = 82'944 TMAC/cycle (~1fJ/MAC)

Aggressive quantization and full specialization

SNE: Perception on Event Sensors

 $v_{\rm th}$

 $\Delta t_{\rm refr}$

General Purpose PE: Domain-Specialized RV32 Core

Specialization Cost: Power, Area: $1.5x\uparrow$ but Time $15x\downarrow \rightarrow E = PT 10x \downarrow$

Parallel, Ultra-Low Power (PULP) PE Cluster

- As VDD decreases, operating speed decreases
- However efficiency increases → more work done per Joule
- Run parallel to get performance and efficiency!

Al is parallel and scales More paralle with NN size

Advancing the SOA on all tasks

RISC-V Cluster

- Comparable 32bits-8bits SOA Energy efficiency to other PULPs [7]
- The highest energy efficiency on sub-byte SIMD operations (4b-2b)

SNE

 1.7X higher than SOA [5] energy/efficiency

CUTIE

• **2X** higher energy efficiency improvement over SOA [6]

CUTIE, SNE can work concurrently for SNN + TNN "fused" inference (never done so far)

[5] L. Deng et al., "Tianjic," JSSC 2020
[6] B. Moons et al., "Binareye," CICC, 2018
[7] D. Rossi et al., "Vega," JSSC 2022.

From Drones to Cars: Stepping up

Microcontroller class of devices

- Infineon AURIX Family MCUs
- Control tasks, low-power sensor acquisition & data processing Features: lockstepped 32-b HP TriCore CPU , HW I/O monitor, dedicated accelerators

Powerful real-time architectures

- ST Stellar G Series (based on ARM Cortex-R cores)
- Domain controllers and zone-oriented ECUs
- Features: HW-based virtualization, Multi-core Cortex-R52 (+NEON) cluster in split-lock, vast I/Os connectivity

Application class processors

- NXP i.MX 8 Family
- ADAS, Infotainment
- Features: Cortex-A53, Cortex-A72, HW Virtualization, GPUs

Carfield: Efficiency + Safety, Security, RT-Predictability

Main Computing and I/O System

Accelerators Domain

How Do We Handle Safety-Critical and Real-Time Tasks?

SAFETY ISLAND			SECURITY ISLAND		L2 MULTI-BANK		FP VECTOR CLUSTER (SPATZ)		
DATA SPM INSN SPM		INSN SPM	SPI JTAG		BK BK		L1 MULTI-BANKED SPM		
		SRAM WECC BOOT ROM		BK	BK				
			IBEX RV-PLIC		BK	BK	LOCAL INTERCO		
CV32E4 CV32E4 CV32E4 TRI-LOCKSTEP		SHA2 KE	Ys TRNG	BK	BK	CTRL	FPU • • • FPU	FPU • • • FPU	
Safe Hart			AES128 OTPs K-H-MAC		ECC		DMA	PE0 CC0 VRF	PE1 CC0 VRF
CLIC INTC			WATCHDOG MAILBOXes		MULTI-PORT (AXI)		DHA	I\$	
PREDICTABLE AXI INTERCONNECT									
I/Os AND PERIPHERALS			MMU	MMU	~	IDMA	L1 MULTI-BANKED SPM		
UART	ART QSPI Protection against transient faults (safety)						LOCAL INTERCONNECT		
Serial Link	CAN	 Predictable On-Chip Communication (RT) 							
GPIOs	GPIOS ETH Reduced contentions to access critical shared memory resources (RT							CAS (RT) Core	
WATCH	I2C	- Reduced contentions to access childar shared memory resources (IVT)							
CDI TIMEDO		HOST SUBSYSTEM					I\$ HMR ACCELERATION CLUSTER		

Safety Island

- Safety-critical applications running on a RTOS
- Three CV32E40 cores physically isolated operating in lockstep (single HART) and fast HW/SW recovery from faults
- ECC protected scratchpad memories for instructions and data
- Fast and Flexible Interrupts Handling through RISC-V compliant CLIC controller
- AXI-4 port for in/out communication

Predictable On-Chip Communication (AXI RT)

- AXI4 inherently unpredictable
- Minimally Intrusive Solution
 - No huge buffering, limited additional logic
 - Solution verified in systematic worst-case real-time analysis

AXI Burst Splitter

 Equalizes length of transactions to avoid unfair BW distribution in round-robin scheme

AXI Cut & Forward

 Configurable chunking unit to avoid long transaction delays influencing access time to the XBAR

• AXI Bandwidth Reservation Unit

- Predictably enforces a given max nr of transactions per time period (to each master)
- Per-address-range credit-based mechanism
- Periodically refreshed (or by user)

Carfield SoC Flooplan – Taped out 11/2023

mm²

4

Host [Cheshire]

Dual-Core 64-bit RISC-V processor; 2.45 mm²; 600 MHz;

Security Island

Low-power secure monitor; 1.94 mm²; 100 MHz;

Safety Island

- 0.42 mm²; 500 MHz
- Re-configurable L2 Memory Subsystem
 - 1MB; 2.33 mm²; 500 MHz
- HMR Integer Cluster
 - 1.17 mm²; 500 MHz;
- Vectorial FP Cluster
 - 1.14 mm²; 600 MHz;

Hyperbus

2 PHY, 2 Chips; 200 MHz; Max BW <u>400 MB/s</u>

Toward Self-Driving Cars

- GF12, target 1GHz (typ)
- 2 AXI NoCs (multi-hierarchy)
 - 64-bit
 - 512-bit with "interleaved" mode
- Peripherals
- Linux-capable manager core CVA6
- 6 Quadrants: 216 cores/chiplet
 - 4 cluster / quadrant:
 - 8 compute +1 DMA core / cluster
 - 1 multi-format FPU / core (FP64,x2 32, x4 16/alt, x8 8/alt)
- 8-channel HBM2e (8GB) 512GB/s
- D2D link (Wide, Narrow) 70+2GB/s
- System-level DMA
- SPM (2MB wide, 512KB narrow)

Occamy: RISC-V goes HPC Chiplet!

What's Next? The era of Foundation Models

- Versatility and Multi-modality
 - Natural language processing, computer vision, robotics, biology, ...
- Homogenization of models
 - Transformers as foundation models
- Self-supervision, Fine-tuning
 - Self-supervised training on large-scale unlabeled dataset
 - Fine-tune (few layers) on specific tasks with smaller labeled datasets.
- Zero-shot specialization
 - Prompt engineering for new tasks

Bommasani, Rishi, et al. "On the Opportunities and Risks of Foundation Models." Center for Research on Foundation Models (CRFM), Stanford Institute for Human-Centered Artificial Intelligence (HAI).

Challenges in Attention

- Attention matrix is a square matrix of order input length
 - Computational complexity
 - Memory requirements
- MatMul & Softmax dominate
- Linear layers are next

Matmul Benefits from Large Shared-L1 clusters

• Why?

- Better global latency tolerance if L1_{size} > 2*L2_{latency}*L2_{bandwidth} (Little's law + double buffer)
- Smaller data partitioning overhead
- Larger Compute/Boundary bandwidth ratio: N³/N² for MMUL grows linearly with N!

A large "MemPool"

- 256+ cores
- 1+ MiB of shared L1 data memory
- ≤ 10 cycle latency (Snitch can handle it)
- Physical-aware design
 - WC Frequency > 700+Mhz
 - Targeting iso-frequency with small cluster

Butterfly Multi-stage Interconnect 0.3req/core/cycle, 5 cycles

MemPool &

MemPool + Integer Transformer Accelerator (ITA)

P

Boosting dot product & matmul

MemPool + Integer Transformer Accelerator (ITA)

Transformer Accelerator

- INT8 operand precision
- Builtin data marshaling & pipelined operation
- Streaming Softmax (support in QuantLib)
- Last layer for MH-Attention, the head accumulation computed in cores

High-performance multi-core system

- Flexible, programmable snitch-based architecture
 - 192 cores split into 48 tiles
- Support convolutions and "exotic" operators

Offloading Attention Operation to ITA

Performance increase of 15x

Energy Efficiency increase of 36x

Area Efficiency increase of 74x

Embodied Al vision: Transformers everywhere?

Thank You!