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What is on the menu today and who is cooking?

• Frank K. Gürkaynak, ETH Zürich

• Senior scientist in the group of Luca Benini

• Director of Microelectronics Design Center (dz.ethz.ch) 

• Open source and IC Design

• Active in the open source HW community 

• Community representative on the board of directors of RISC-V 

• Involved in IC Design since 1995

• Energy efficient processor design

• Cryptographic Hardware accelerators  

• Contact

• e-mail: kgf@iis.ee.ethz.ch

• Homepage: https://iis.ee.ethz.ch/~kgf
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What is on the menu today

• Brief introduction into how computer architectures evolved

• How we have addressed the need for ever more computing, what are our issues

• What are the characteristics of  (present) AI/ML algorithms

• Why throwing more and more cores are not helping much

• What is the PULP team doing about it

• Efficient cores (SIMD, Quantization)

• Shared memory accelerators (PULP cluster)

• Scaling to 100s and 1000s of cores (Mempool, Occamy, FlooNoC)

• Vector processing (Ara, Spatz)

• Heterogeneous acceleration  (Kraken, ITA)
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Emergence of Microprocessors1970s

"Dieses Foto" von Unbekannter Autor ist lizenziert gemäß CC BY-SA

Intel 4004: First commercially available microprocessor, operating at 740 kHz.

1975s

1980s

1990s

2000s

2010s

2020s
4

These slides “borrowed” from
Viviane Potocnik 
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Emergence of Microprocessors

Intel 4004: First commercially available microprocessor, operating at 740 kHz.

Intel 8080/8086: More powerful and set foundation for the x86 architecture.

1970s

1975s

1980s

1990s

2000s

2010s

2020s
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Moore’s Law (Early Phase)

Transistor density doubled roughly every 1.5–2 years, enabling more complex 
yet still rudimentary chips.

Lower cost + higher integration: allowed CPUs to move from large mainframes 
to personal computers.

1970s

1975s

1980s

1990s

2000s

2010s

2020s
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Basic Pipelining

Some early CPUs started using simple pipelines (fetch, decode, execute).

Modest gains but established the principle of overlapping instruction stages.

1970s

1975s

1980s

1990s

2000s

2010s

2020s

These systems are too limited for large-scale data processing. 
However, the basic idea of packing more transistors to improve 
performance lays groundwork for future, more parallel designs.
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Instruction Level Parallelism1970s

1975s

1980s

1990s

2000s

2010s

2020s

Intel Pentium

Superscalar Approach

CPUs could dispatch 
multiple insns/cycle

Significant increase in 
single-threaded performance

Out-Of-Order Execution

HW scheduling of instructions to
bypass stalls

Register renaming and large 
reorder buffers keeps pipeline full

Speculative Execution

Guessing the outcome of 
branches to minimize idle cycles

Increasing HW complexity 
(branch predictor, caches, …)

ILP boosts performance for general-purpose, single-thread 
workloads. ML requires more parallel, vector-based operations, 

beyond what ILP alone efficiently handles.
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The Clock Frequency Race1970s

1975s

1980s

1990s

2000s

2010s

2020s

Pipeline Stages Evolution

# 
P

ip
el

in
e 

St
ag

es

Years

Intel 8086

Intel P6

Intel Pentium 4

Long pipelines to achieve higher frequencies
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The Clock Frequency Race1970s

1975s

1980s

1990s

2000s

2010s

2020s

Pipeline Stages Evolution

# 
P

ip
el

in
e 

St
ag

es

Years

Intel 8086

Intel P6

Intel Pentium 4

Long pipelines to achieve higher frequencies

Initial performance gains with increased clock speeds

Each incremental GHz requires 
disproportionately more power and 

produces more heat.

Costlier branch misprediction penalties!
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The End of Dennard Scaling1970s

1975s

1980s

1990s

2000s

2010s

2020s

Hot Plate

Nuclear Reactor

Rocket Nozzle
𝑷𝒅𝒚𝒏𝒂𝒎𝒊𝒄 = 𝑵 ∗ 𝑪 ∗ 𝑽𝟐 ∗ 𝒇 ∗ 𝑨

Scaling down transistors 
allows proportional voltage + 

power reductions

End of Dennard Scaling

Power Wall: higher frequencies cause 
exponential increase in heat + power

density

Memory Wall: CPUs greatly outpace
DRAM speeds; even caches cannot fully 

mask memory access latencies

Single-thread optimizations and frequency ramp-ups 
are not enough to sustain large (ML) workloads.
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The Multicore Era1970s

1975s

1980s

1990s

2000s

2010s

2020s

1.13x

1.73x1.73x

1.02x

0

0.5

1

1.5

2

Single-Core
20% over-clocked

Dual-Core
20% under-clocked

Relative Single- vs. Dual-Core Performance

Performance Power

A single-core system delivers just a 13% performance boost but 
consumes 73% more power, while a dual-core setup provides a 

73% performance increase with only a 2% rise in power
consumption.

Intel Core 2 Duo

AMD Athlon X2
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If your problem is too big, just throw more cores at it

13

What is happening 
here?

Linear
Speedup

Diminishing 
Returns

Drop-Off 
Point

• At this stage, adding more processors leads to 
nearly ideal speedup.

• Tasks are well-parallelized, and overheads are 
minimal.

• Real speedup starts deviating from the ideal 
speedup

• Communication overhead, memory bottlenecks, 
or serial parts of the program limit scaling

• Adding more processors causes speedup to drop
• Synchronization overhead increases
• Communication between processors 

becomes the bottleneck
• Not enough parallel work left to distribute.

*Problem Size is fixed

*
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Weak Scaling

14

Ideal

Gustafson 
Law

𝑺 = 𝟏 + 𝟏 − 𝑵 × 𝒑

Amdahl’s 
Law

𝑺 =
𝟏

𝒔 + ൗ
𝒑
𝑵

Sun-Ni Law

𝑺 =
𝒔 + 𝒑 ⋅ 𝑮(𝑵)

𝒔 + ൗ𝒑 ⋅ 𝑮(𝑵)
𝑵

• S: speedup
• p: parallelizable fraction of the 

code
• s: fraction that must be run 

sequentially
• N: number of processors 
• G(N): memory boundness 

w.r.t. problem size 

real

Scaled Speedup for Scaled Problem Sizes

Sc
al

ed
 S

p
ee

d
u

p

TAICHIP Winter School - February 2025 - PULP and AI Acceleration - Frank K. Gürkaynak



Weak Scaling

15

Ideal

Gustafson 
Law

Amdahl’s 
Law

Sun-Ni Law

real

Insufficient 
Main Memory

Communication 
Bound

Scaled Speedup for Scaled Problem Sizes

Sc
al

ed
 S

p
ee

d
u

p

TAICHIP Winter School - February 2025 - PULP and AI Acceleration - Frank K. Gürkaynak



The Rise of ML1970s

1975s

1980s

1990s

2000s

2010s

2020s

Turning point in 
compute demand

ML inference and training start to require 
far more processing power than 

traditional scaling can reliably provide.

The need arises to understand the 
underlying computations and thus, 

computational requirements in 
ML/AI models.
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Human-Programmed RulesHumans

Programming Language

Classic CPUs (local or cloud)

Python, Rust, 
C/C++, …

Local or 
Cloud

X86, M3, ARM, 
FPGAs, …

Classic CPUs (local or cloud)

Training Data

Users, Sensors, …
Web, Mobile, 
Cloud …

Text, Data, Audio, 
Video, …

Training Algorithm

GPUs, FPGAs, ASICs, TPUs

Tensorflow, Pytorch, MxNet

Trained ML/AI Model

GPUs, CPUs, Cloud… 

Input Inference Predictions

Users, Sensors, …
Web, Mobile, 
Cloud …

Text, Data, Audio, 
Video, …

Classic Compute                                   ML

Multi-core AI 
chips, Cloud 
for large 
models

Input Applications Output



Human-Programmed Rules

Programming Language

Classic CPUs (local or cloud)

Classic CPUs (local or cloud)

Training Data

Training Algorithm

GPUs, FPGAs, ASICs, TPUs

Tensorflow, Pytorch, MxNet

Trained ML/AI Model

GPUs, CPUs, Cloud… 

Input Inference Predictions

Classic Compute                                   ML

Input Applications Output

M
L -

Train
in

g

P
ro

gram
m

in
g

Predefined Rules, Logic
and Knowledge are coded
into programs by humans.

Teaches a DNN to learn 
from examples (training 
data), rather than being 
explicitly programmed.



Human-Programmed Rules

Programming Language

Classic CPUs (local or cloud)

Classic CPUs (local or cloud)

Training Data

Training Algorithm

GPUs, FPGAs, ASICs, TPUs

Tensorflow, Pytorch, MxNet

Trained ML/AI Model

GPUs, CPUs, Cloud… 

Input Inference Predictions

Classic Compute                                   ML

Input Applications Output

M
L -

Train
in

g

P
ro

gram
m

in
g



Human-Programmed Rules

Programming Language

Classic CPUs (local or cloud)

Classic CPUs (local or cloud)

Training Data

Training Algorithm

GPUs, FPGAs, ASICs, TPUs

Tensorflow, Pytorch, MxNet

Trained ML/AI Model

GPUs, CPUs, Cloud… 

Input Inference Predictions

Classic Compute                                   ML

Input Applications Output

M
L -

Train
in

g

P
ro

gram
m

in
g

Execu
tio

n

In
fe

re
n

ce

Programs take input from humans, 
sensors or other programs. They run on 

the same type of classic CPUs as they 
were developed on.

Once the system has been trained it can 
be deployed/run on specialized

hardware tailored for inference tasks



The Era of GenAI: ML is Yesterday’s News

Source: Armand Ruiz
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The Era of GenAI: Scaling Laws

Neither can technology scaling… 
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GenAI Efficiency: Learning from the Best Hardware

https://www.educba.com/artificial-intelligence-vs-human-intelligence/ 23TAICHIP Winter School - February 2025 - PULP and AI Acceleration - Frank K. Gürkaynak
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ML & AI: The Energy Challenge

Cost per Unit
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The Trend: Accelerators

25

• Specialized Compute chip for specific 
workloads

• Today mostly for Machine learning

• GPUs dominate, but even more specialized 
accelerators are coming
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An Overview of Accelerators

Accelerator Type Description Applications Models Hardware

Highly Parallel 
Accelerators

Massive parallelism
for matrix

computations.

CNN/DNNs: Efficient
image processing.

ResNet, EfficientNet
NVIDIA A100, AMD 

MI300, PULP cluster

AMD MI300

NVIDIA A100

PULP Cluster
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An Overview of Accelerators

Accelerator Type Description Applications Models Hardware

Sparse Accelerators
Exploits sparsity to 

reduce computation 
and memory costs.

Sparse Attention: 
Efficient for NLP and 

vision tasks.
BERT, GPT, ViT

Tensor Cores, Sparse 
Stream Semantic 
Registers (SSSRs)
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An Overview of Accelerators

Accelerator Type Description Applications Models Hardware

Computes near 
memory to reduce 

latency and 
bandwidth 

bottlenecks.

GNNs: Applications in 
recommendation 

systems and graph 
analytics.

GraphSAGE, GCN
Samsung FIMDRAM, 

UPMEM DPUs
Processing-in-
Memory (PIM)

UPMEM

SAMSUNG
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An Overview of Accelerators

Accelerator Type Description Applications Models Hardware

Optimized for matrix 
multiplications and 

tensor-heavy 
workloads.

Foundation Models: 
Powering GPT-4, 

Stable Diffusion, and 
other large-scale AI 

models.

GPT-4, PaLM, 
MedSAM

Google TPU, Tesla 
Dojo, Habana Gaudi, 
Occamy, MemPool

Tensor 
Accelerators

GOOGLE TPU
TESLA DOJO
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An Overview of Accelerators

Accelerator Type Description Applications Models Hardware

Mimics the brain, 
using spikes for 

asynchronous event-
driven processing.

Spiking Neural 
Networks (SNNs): 

Robotics and vision-
based event 
detection.

Spikformer, 
SSTFormer, SCNN

Intel Loihi, SpiNNaker, 
Kraken

Neuromorphic 
Accelerators

30TAICHIP Winter School - February 2025 - PULP and AI Acceleration - Frank K. Gürkaynak



Looking up to the Leader
Dally HotChips 2023
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Team of 100 people in ETH Zürich – University of Bologna

• Research on open-source energy-efficient computing 
architectures

• Started in 2013, we are celebrating 10 years of our project this year

• Led by Luca Benini

• Involves ETH Zürich (Switzerland) and University of Bologna (Italy)

• Large group of almost 100 people
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Our research focus: cluster-based many-core accelerators

33

EXT

ACC
#1

ACC
#2

EXT EXT EXT

Cluster 1 

mem
bank

mem
bank

mem
bank

mem
bank

mem
bank

mem
bank

Tightly coupled data memory interconnectDMA

RV
core

RV
core

RV
core

RV
core

Instruction Cache

High-speed on-chip interconnect (NoC, AXI, other..)

Computing cluster with tightly coupled accelerators

Extensions to processor cores

• Explore new extensions

• Efficient implementations

Shared-memory Accelerators

• Domain specific

• Local memory

L2
Accelerator

#1

L2
Accelerator

#2

L2
Accelerator

#M

Decoupled
accelerators

Multiple Decoupled Accelerators

• Communication 

• Synchronization

EX
T

External
Memory

Controller

L2 memory

Peripherals

Host
core

Host, L2, L3 IOs

Multiple Scales of acceleration 

RISC-V is a key enabler max agility, enabling SW build-up, without vendor lock-in



Platforms

RISC-V Cores and Vector Units

RI5CY
CV32E

RV32

Zero R
Ibex

RV32

Ariane
CVA6

RV64

ARA

RVV

Snitch

RV32

Spatz

RVV

Interconnects

AXI4 

APB

LIC HCI 

FlooNoC 

Peripherals

DMA GPIO

I2SUART

SPIJTAG

Accelerators and ISA extensions

ITA
(Transformers)

RBE, NEUREKA
(QNNs)

FFT
(DSP)

XpulpNN,
XpulpTNN

REDMULE
(FP-Tensor)

R5

MI

O

in
te

rc
o

n
n

ec
t

A

Single core
• PULPino, PULPissimo
• Cheshire

IOT HPC

M

I

O
cluster

interconnect

A R5R5R5

M MMM

in
te

rc
o

n
n

ec
t

Multi-core
• OpenPULP
• ControlPULP

R5

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

A R5R5R5

M MMMM

I

O in
te

rc
o

n
n

ec
t

Heterogeneous, Many-core
• Hero, Carfield, Astral
• Occamy, Mempool

R5

PULP creates a toolbox for efficient architectures
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We make everything (we can) available openly 

• All our development is on GitHub using a permissive license

• HDL source code, testbenches, software development kit, virtual platform

rm

• PULP is released under the permissive Solderpad license

• Allows anyone to use, change, and make products without restrictions. 

https://github.com/pulp-platform
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RISC-V the open ISA

• Originally developed at UC Berkeley as part of a class

• Open ISA managed by RISC-V international since 2015

• ETH Zürich is a founding member (currently Frank is in the Board of Directors)

• Headquarters officially in Zurich

• Simple Base ISA (RV32 / RV64 / RV128)

• Extensions to cover many aspects (vector, matrix..)

• Open development

• Technical working groups where members discuss and propose new extensions

• Public review and comments, ratified by the Board of Directors  

• Allows processors to be designed and extended easily

• While allowing a common SW infrastructure to be built around it. 
36



a free ISA to build SoA computer systems

• It is FREE

• Everybody can build, sell, and make RISC-V cores available

• The description is FREE, implementations can be FREE or proprietary

• It is a modern design, no historical baggage

• Some common ISAs (ARM, Intel..) have been around for 20+ years
Newer implementations, still need to be compatible to older designs. 

• RISC-V benefited form the mistakes made by others, cleaner design

• Major design decisions have been properly motivated and explained

• Reserved space for extensions, modular

• Open standard, you can help decide how it is developed
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Are                                processors better than XYZ?

• Actual performance depends on the implementation

• RISC-V does not specify implementation details (on purpose)

• It is a modern design, should deliver comparable performance

• If implemented well, it should perform as good as other modern ISA 
implementations

• In our experiments, we see no weaknesses when compared to other ISAs

• It also is not magically 2x better

• High-end processor performance is not much about ISA

• Implementation details like technology capabilities, memory hierarchy, 
pipelining, and power management are more important.
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Exposing Quantization to SW: ISA Extensions 

• RISC-V has Reserved opcodes for standard extensions

• Rest of opcodes free for custom implementations

• Custom extensions can be standardized 

• Standard extensions will be frozen/not change in the future

Extensibility is fundamental in the RISC-V ISA!
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Achieving ~100% dotp Unit Utilization

40

addi a0,a0,1
addi t1,t1,1
addi t3,t3,1
addi t4,t4,1
lbu a7,-1(a0)
lbu a6,-1(t4)
lbu a5,-1(t3)
lbu t5,-1(t1)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
bne s5,a0,1c000bc

8-bit Convolution RV32IMC

LD/ST with post 
increment

HW Loop

8-bit SIMD sdotp

RV32IMCXpulp

N
N/4 lp.setup

addi a0,a0,1
addi t1,t1,1
addi t3,t3,1
addi t4,t4,1
lbu a7,-1(a0)
lbu a6,-1(t4)
lbu a5,-1(t3)
lbu t5,-1(t1)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
end

lp.setup
p.lw w1, 4(a0!)
p.lw w2, 4(a1!)
p.lw x1, 4(a2!)
p.lw x2, 4(a3!)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
end

lp.setup
p.lw w1, 4(a0!)
p.lw w2, 4(a1!)
p.lw x1, 4(a2!)
p.lw x2, 4(a3!)
pv.sdotsp.b s1, w1, x1 
pv.sdotsp.b s2, w1, x2
pv.sdotsp.b s3, w2, x1
pv.sdotsp.b s4, w2, x2
end

9x less
instructions

than RV32IMC

14.5x less instructions
at an extra 3% area cost 

(~600GEs)

can we remove?

Yes! dotp+ld

pv.nnsdot{up,usp,sp}.{h,b,n,c} rD, rs1, Imm

Init NN-RF (outside of the loop)
lp.setup
pv.nnsdotup.h s0,ax1,9
pv.nnsdotsp.b s1, aw2, 0
pv.nnsdotsp.b s2, aw4, 2
pv.nnsdotsp.b s3, aw3, 4
pv.nnsdotsp.b s4, ax1, 14
end

8-bit sdotp + LD

N/4
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Next: Sub-byte precision

41

Quantizazion of a MobilenetV1_224_1.0 (*)

(*) Rusci M. et al., Memory-Driven Mixed Low Precision Quantization For Enabling Deep Network Inference On Microcontrollers. . arXiv preprint arXiv:1905.13082. 

Quantized Neural Networks (QNNs) are a natural target for execution on constrained extreme edge platforms.

8b

5b

4b

3b

2b

1b

SoA Quantization Results

Mixed-precision approach key to meet 
the memory constraints of tiny devices

Courtesy of Rusci M. «Example on MobilenetV1_224_1.0.»C

0.8%

4.4%

2.9%

4x

7x

8x
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Processor HW Extension  

42

• Goal

• HW support for mixed-
precision SIMD instructions;

• Challenge

• Enormous number of 
instructions to be encoded in 
the ISA;

• Solution

• Status-based execution.
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Virtual SIMD Instructions

• Encode operation as a virtual SIMD in 
the ISA (e.g. sdotsp.v)

• Format specified at runtime by a 
Control Register (e.g. 4x4)

• 18018 Instructions needed for 
SIMD DOTP

• Potential to avoid code replication for 
different formats

• Tiny Overhead on QNN for Switching 
format

• Format switch not frequent in DNN, e.g. 
every layer.

DECODER

CSR

MULT/ALU

MULT/ALU
SIMD

SCALAR 
INSTR

VIRTUAL SIMD INSTR

SIMD 
FORMAT

MAC3
2 SCALAR

SDOTP.v

MIX8x4

SDOTP.M8x4
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0.001

0.01

0.1

1

8-bit convolution 4-bit convolution 2-bit convolution

STM32L4 (M4) STM32H7 (M7) PULP (RI5CY) 0.65V

PULP (RI5CY) 0.8V PULP (XpulpNN + m&l) 0.65V PULP (XpulpNN + m&l) 0.8V

8-Cores x Cluster + XpulpNN + M&L (22nm)

44

146x

401x

1.6x
294x

1600x

6x 356x

1230x

7.4x

EN
ER

G
Y

 E
FF

IC
IE

N
C

Y
 [

TO
P

S/
W

]
Lo

g 
sc

al
e
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Parallel, Ultra-Low Power (PULP) PE Cluster

 As VDD decreases, 
operating speed 
decreases

 However efficiency 
increases more work 
done per Joule

 Run parallel to get 
performance and 
efficiency!

45

Optimum
point

Better have N PEs at optimum 
Energy efficiency than 1 PE  running 

fast at low efficiency

AI is parallel and scales 
More parallel with NN size

[Rossi et al. IEEE Micro 2017]



Let's design a cluster with multiple (4-16) RISC-V cores
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CLUSTER

RISC-V
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Low-Latency shared Tightly Coupled Data Memory
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CLUSTER

Logarithmic Interconnect

RISC-V

core

RISC-V

core

RISC-V

core

RISC-V

core

Tightly Coupled Data Memory BF=2

Mem0 Mem1 Mem3Mem2

Mem4 Mem5 Mem7Mem6

• Parallel memory access 
with low contention

• Multi-banked, address-
interleaved L1

• Fast interconnect with 
physical design 
awareness

• Logarithmic depth of 
combinational switchboxes

Trade-off between memory size and latency



DMA based, non-blocking mem copy with fast sync.
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core

DMA

RISC-V

core

RISC-V

core

RISC-V

core

Tightly Coupled Data Memory BF=2

Mem0 Mem1 Mem3Mem2

Mem4 Mem5 Mem7Mem6

HW

SYNC

[Glaser TPDS20]
~15x latency and energy reduction for a barrier



Shared instruction cache with private “loop buffer”
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Tightly Coupled Data Memory BF=2
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HW
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I$-S

L2
Mem

• Two-level instruction 
cache
• Private (P) + Shared (S)

• Most instrunctions 
fetched form Private 
Instruction Cache

• Low fetch energy

• Shared instruction cache 
to augment capacity

• Reduces miss 
latency



Host for sequential, I/O + Data-Parallel Accelerator Cluster
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https://github.com/pulp-platform/pulp



Combining ISA extension + Efficient parallel execution
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• 8-bit convolution

• Open source DNN library

• 10x through xPULP

• Extensions bring real speedup

• Near-linear speedup

• Scales well for regular 
workloads

• 75x overall gain 

• 7-8 GMACs

• 250MHz

• 4 MAC/Cycle (8bit)

• 8 Cores

Near-Linear
Speedup

Overall Speedup of 75x

10x Speedup w.r.t. 
RV32IMC

(ISA does matter)

[Garofalo et al. Philos. Trans. R. Soc 20]More GOPS, less power



What’s next? Tightly-coupled accelerators
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Acceleration with flexibility:  zero-copy HW-SW cooperation



Kraken: 22FDX SoC, Multiple Heterogeneous Accelerators

• RISC-V Cluster

8 Compute cores +1 DMA core

• CUTIE

Dense ternary-neural-network 

accelerator

• SNE

Energy-proportional spiking-

neural-network accelerator

Technology 22 nm FDSOI

Chip Area 9 mm2

SRAM SoC 1 MiB

SRAM Cluster 128 KiB

VDD range 0.55 V - 0.8 V

Cluster Freq ~370 MHz

SNE Freq ~250 MHz

CUTIE Freq ~140 MHz

SoC Domain
Cluster 
Domain
(PULPO)

SNE CUTIE

FLLs

3000 µm

3
00

0 
µ

m

The Kraken: an “Extreme Edge”  Brain
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• Completely Unrolled Ternary Neural Inference Engine: K × K window, all input channels, cycle-by-cycle sliding

• One Output Compute Unit (OCU) computes one output activation per cycle!

• Zeros in weights and activations, spatial smoothness of activations reduce switching activity

Output channel compute unit (OCU)

Σ
Σ

P
o

o
lin

g

Th
re

sh
o

ld

Ternary Weights
(2bits) 864 Ternary Multipliers

2 Popcount units

Ternary Activations
(2bits)

CUTIE: Perception from Frame Sensors
[Scherer et al. TCAD22]

Aggressive quantization and full specialization
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Kraken`s CUTIE Implementation

• Data in 1.6 bits (Ternary value) with 

On-the-fly Compression/Decompression

• Configuration in Kraken

• 96 channels (Output compute units)

• 3 × 3 kernels

• 64 × 64 pixels feature maps (158 KiB)

• 9 layers of weights (117 KiB)

• Lots of TMAC/cycle

• 96 OCUs, 96 Input channels, 3 × 3 kernels:

• 96 × 96 × 3 × 3  = 82'944 Ternary-MAC/cycle

Weight 
Memory
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s

1fJ/MAC (1POP/s/W) 
Ternary OPS
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SNE: Perception on Event Sensors
Event Sensors – DVS camera
Ultra-low latency
Energy- proportional interface

Leaky Integrate & Fire (LIF) neurons

[Di Mauro et al. DATE22]

Spiking Neural Engine (SNE)

SNE works seamlessly with DVS (event-based) sensors
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Event consumption, and output spikes generation

A more complex dynamic than conventional DNNs neurons:

• Membrane Potential Accumulation/Activation 1× SynAcc = 1× 4b-ADD + 1× 8b-COMPARE

• Membrane Potential decay 1× SynDec = (1× 8b-MUL) + (1× 8b-MUL + 1× 8b-ADD)

t

x

y

convolutional
3 × 3 kernels

3 × 3 × T Event-Frame patch
List of Coordinate (COO)

t

1 × 1 × T tensor 
per output neuron

Leaky Integrate & Fire (LIF) neuron

O
u

tp
u

t 
ev

en
t

Synaptic 
connection

M
em
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Po
te

n
ti

al
(S

ta
te

)

Threshold is 
exceeded

SNN’s neuron processing element (PE)

Event Stream
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Kraken Shield and System Architecture

58

• 7g payload

• DVS and frame-based cameras  real-time multi-modal perception.

• Designed for integration into nano-UAV platforms
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Spiking Neural Networks for Depth Estimation

59

SNN SCNNs for depth estimation.

Depth Estimation

1.02k inferences/s

Energy Efficiency

18 µJ per inference

Low Power

98mW @ (220MHz, 0.8V)

Memory 

Port

Streamer

Streamer

APB Port
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X
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ar
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Slice Slice Slice Slice

SliceSliceSliceSlice

Conf Reg & Reg IF

Se
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Params

Cluster Cluster Cluster Cluster

ClusterClusterClusterCluster

Cluster Cluster Cluster Cluster
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Collector
Address Filter
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Input 
Events
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Ternary Neural Networks for Object Classification

60

CUTIE  TNN for object classification.

Object Classification

10k inferences/s

Energy Efficiency

6 µJ per inference

Low Power

110mW @ (330MHz, 0.8V)
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Kraken Power Consumption (all Included)

61

Model Inference/s µJ/inf
Power 
(mW)

SNE 1.02k 18 98

CUTIE 10k 6 110

PULP 221 750 165

Combined power consumption of SNE, CUTIE, PULP cluster

Kraken power waveform executing Tiny-PULP-Dronet at FC@280 MHz, CL@300 MHz, Vdd@0.8 V

P=373mW, representing just 5% of the UAV’s power budget

TAICHIP Winter School - February 2025 - PULP and AI Acceleration - Frank K. Gürkaynak



How to deploy applications to PULP/Kraken?

62

Specification and dataset selection

Training

Quantization/Pruning

Deeploy

PULP-NN
PULP Neural Network 
backend

QuantLab
Quantization Laboratory

SNE 
Toolbox

CUTIE/SNE 
Hardware Abstraction
Layer

Graph optimization

Memory-aware 
deployment

Optimized 
DNN library

Accelerator 
mapping

CUTIE 
primitives

Accelerator 
mapping

SNE 
primitives

Tiling

RISC-V Cluster CUTIE SNERISC-V FC Kraken

QA SNN 
Training
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Siracusa: Higher performance cluster with N-Eureka

63

CLUSTERHOST
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Tightly Coupled Data Memory
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MemDMA Mem MemMem

RV 1
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Mem Mem MemMem

I$

Mem
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I$ I$

At-MRAM NE
(N-EUREKA)

...

N-EUREKA large NE 
configuration
(~8x RBE v2)

MRAMTight coupling with MRAM
provides ultra-efficient 

weight storage & access
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1 Core = receptive field of 1×1 pixel in/output 
across 32 out-channels
Output stationary, Input quasi-stationary
Parametric number of Cores (N×M out-pixel)
8b activations, 2-8b weights
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Siracusa: Memory Hierarchy and Dataflows
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Siracusa: 16nm SoC, Tightly Coupled at MRAM Accelerator

65

[A. Prasad et al., “Siracusa: a 16nm Heterogeneous RISC-V SoC for Extended Reality with At-MRAM Neural Engine,” IEEE Journal of Solid-State Circuits]

Siracusa[5][4]Marsellus [3]Diana [2]Vega [1]

16nm FinFET22nm40nm22nm FDX22nm FDX22nm FDXTechnology

16mm28.76mm225mm28.7mm210.24mm210mm2Area

6400 KB SRAM
4 MB MRAM (L1)

1428 KB768 KB1152 KB SRAM896 KB SRAM1728 KB SRAM
4 MB MRAM (L3)

On-chip mem

698 GOPS146 GOPSN/A90 GOPS140 GOPS32.2 GOPSPeak Perf 8b

2.68 TOPS/W0.7 TOPS/W0.94 TOPS/W1.8 TOPS/W2.07 TOPS/W1.3 TOPS/WPeak Eff 8b

8.84 TOPS/W 
(2x8b)

0.7 TOPS/W60.6 TOPS/W 
(1x1b)

12.4 TOPS/W 
(2x2b)

4.1TOPS/W 
(2x2b)
600 TOPS/W 
(analog)

1.3 TOPS/WPeak Eff (WxAb)

65.2 GOPS/mm258.3 GOPS/mm2N/A47.4 GOPS/mm221.2 GOPS/mm23.2 GOPS/mm2Area Eff

[1] D. Rossi et al., JSSC’21
[2] P. Houshmand et al., JSSC’23
[3] F. Conti et al., JSSC’23
[4] M. Chang et al., ISSCC’22
[5] Q. Zhang et al., VLSI Symposium’22

Balance efficiency, peak performance, area efficiency
without compromises in precision

N-EUREKA 36-cores configuration
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Achieving Scale through Hierarchical Design
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Snitch Core Snitch Cluster

Occamy Group

Occamy ChipletOccamy System



Snitch Core: Tiny Integer Control Core with Large FPU

• Snitch: tiny, extensible RV core

• Extensible through accelerator port

• Latency-tolerant through scoreboard
 can issue ~10 non-blocking memOPs

• Usually paired with FPU subsystem

• Large, pipelined double-precision FPU

• FP8-FP64 SIMD capable

• Multiple subsystems supported (e.g. Spatz
vector unit, INT-SIMD,…)

• ISA extensions for near-ideal FPU util.

• SSRs: map memory streams to FP registers

• FREP: dedicated HW loop for FPU
 FPU & int. core can compute in parallel

TAICHIP Winter School - February 2025 - PULP and AI Acceleration - Frank K. Gürkaynak 67

Score-
board

Regfile

LSU

Acc. Port

ALUDecode

L0
 I$

Sh
ar

ed
 L

1 
I$

Memory

M
em

o
ry

Snitch
RV32I

Core

ctrl.

FREP
Sequencer FPU SSRs

Memory

FPU
Subsystem



68

SSR & FREP:  the Key for PE efficiency

• SSR: Link register read/writes into implicit LD/ST

• Extension around the core’s register file

• Address generators (2-3KGE/SSR) 

• Configured out of inner loop (LD/ST elision)

• Staggering: generators prefetch from memory (latency tolerant!)

• FREP: L0 instruction buffer (no I$ access)

• Pseudo-dual issue (Int pipeline can proceed in parallel)

• No boundary checking for loop (similar HW loop in DSPs)

• Boost FPU utilization  100% (once setup is amortized)

dotp: 30% FPU dotp: 90% FPU

Less expensive than OoO (CPU) and Multi-threading (GPU),  complements SIMD/Vec/Mat instructions 
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64 GB/s duplex

8 GB/s 
duplex

Snitch Cluster: The Fundamental Compute Block 

• 8 Snitch compute cores

• SIMD 64b FPU with SSRs & FREP

• 9th Core: DMA engine

• 512b interface to interconnect

• HW support for autonomous ≤ 2D transfers,
higher dimensions through SW

• Latency-tolerance block transfers (100s of cycles)

• 128 KiB TCDM

• 32-bank, low-latency shared scratchpad

• Double-buffer large chunks with DMA

• Shared I-cache and peripherals
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Four Clusters form a Group

• Hierarchically shared bandwidth

• Clusters fully connected through crossbars 
 high-bandwidth local data exchange

• Single shared 64b / 512b ports to top

• Shared resources

• 32 KiB constant cache

• IOTLB for address remap & access control

• SW-controlled clock gating and reset

• Simplified physical implementation

• 6 groups  24 clusters per chiplet
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Occamy Chiplet: Six Groups with HBM and D2D Link

• 6 fully connected groups

• 24 clusters, 216 cores total

• 512b NoC for data, 64b for messages

• Autonomous 64b host domain

• CVA6 RV64GC Linux-capable core

• Rich peripherals (SPI, I2C, UART…)

• 16 GiB, 410 GB/s HBM2E

• Optional page-level interleaving

• 12.8 GiB/s die-to-die link

• Fully digital and fault-tolerant
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Occamy 2.5D System: Chiplets on Passive Interposer

72

Chiplet

Hedwig

Carrier PCB

• Hedwig interposer

• 65nm, passive (BEOL only)

• Connects 2× 73 mm2 Occamy chiplet
(GF 12LP+) and 2× Micron HBM2E

• Distributes power and IOs

• Carrier PCB

• RO4350B (low CTE, high stability)

• LGA 2011 pinout adapted to fit ZIF socket

• Stabilizes assembly and power

 Occamy system module

• 432+2 RISC-V cores, 32 GiB HBM2E

• 768 DP-GFLOP/s peak performance (HPC)

• 6144 FP8-GFLOP/s peak performance (ML)
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LLVM Snitch Extensions

• Why extend LLVM?

• Make extensions accessible (intrinsics, 
inference)

• Improve scheduling and register allocation
(default tuned for renaming OoO machines)

• Improve reassociation (many RAW stalls)

• LLVM 15 with Snitch extensions:

• Tuned in-order machine model

• Xssr, Xfrep, Xdma assembly and intrinsics

• Tuned tree height reduction pass1

(efficient reassociation of unrolled FP math)

• SSR inference based on scalar evolutions

• FREP inference loop pragma

double sum=0.0, a[N], b[N];

__builtin_ssr_setup_1d(      0,   0, N-1, 8, a);
__builtin_ssr_setup_1d(      1, 0, N-1, 8, b);

__builtin_ssr_enable();

#pragma frep infer
for (unsigned i = 0; i < N; ++i)

sum += __builtin_ssr_pop(0) * __builtin_ssr_pop(1);

__builtin_ssr_disable();

SSR Repeat Bound Stride Data

...
fmadd.d fa0, ft0, ft1, fa0
fmadd.d fa0, ft2, ft3, fa0
fmadd.d fa0, ft4, ft5, fa0 
...

naïve register allocation
 RAW stalls, low IPC

FREP?

SSRs?

𝒂 ⋅ 𝒃

[1] https://reviews.llvm.org/D132828

TAICHIP Winter School - February 2025 - PULP and AI Acceleration - Frank K. Gürkaynak 73



Runtime Support
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Data Movement

1D/2D DMA transfers for 
block transfers
Intrinsics for:
1. Setup
2. Coarse and Fine-Grained 

Synchronization

Dual-chiplet
Connectivity
Fault-tolerant double-data-
rate die-to-die links for robust 
inter-chiplet data exchange

Extensions

Sparsity-capable SUs
Specialized streaming units 
facilitate indirection and 
merging, tailored for sparse 
computations.

FREP
Decouples the floating-point and 
integer pipeline by sequencing 
instructions from a micro-loop 
buffer

Synchronization

DMA Synchronization
Can be exploited for different 
applications that require, e.g. 
double buffering or full synch.

Hierarchical Synch.
Flexibility to synchronize on 
cluster, and global level or 
partial synchronization. 



Matmul Benefits from Large Shared-L1 clusters
• Why? 

• Better global latency tolerance if L1size > 2× L2latency × L2bandwidth (Little’s law + double buffer)

• Smaller data partitioning overhead

• Larger Compute/Boundary bandwidth ratio:  N3/N2 for MMUL grows linearly with N!

• A large “MemPool”: 256+ cores and 1+ MiB of shared L1 data memory
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What is the cost of traversing MemPool?
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Efficient arithmetic 
operations
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MemPool Cluster: A physical-aware design

77

Group

MemPool
&

Terapool

MemPool ClusterMemPool Group

• A Scalable Manycore Architecture with Low-Latency Shared L1 Memory

• 256+ cores

• 1+ MiB of shared L1 data memory

• ≤ 8 cycle latency (Snitch can handle it)

• Hierarchical design

• Implemented in GF22

• Targeting 500 MHz (SS/0.72V/125°C)

• Reaching 600 MHz (TT/0.80V/25°C)

• Targeting iso-frequency with PULP

• Cluster area of 13 mm2

• 5 mm diagonal

• Round trip in 5 cycles

• Terapool: 1024 Cores!
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How well do we scale?

• Evaluate highly optimized kernels

• Baseline: single core system

• No synchronization overhead or contention

• Compute-heavy kernels achieve more 
than 88% of the ideal speedup

• Memory-bound kernels still achieve 
75% of the ideal speedup

0

50

100

150

200

250

MatMul2DConv DCT axpy dotp
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    Single Core MemPool

Close to ideal scaling
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Where do we lose performance?

• Compute-heavy kernels:

• Mainly synchronization overhead

• Interconnect congestion 

• Achieve up to 66% MAC unit 
utilization

• Memory-bound kernels:

• Short execution time

• Synchronization overhead

• Still achieve IPC of 75%

0% 20% 40% 60% 80% 100%

matmul

2dconv

dct

axpy

dotp

Compute Control Synchronization I$ LSU RAW

Instructions Stalls

IPCUtilization

66% MAC unit 
utilization

Minimal
architectural stalls
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System Performance

• Double-buffer the kernels

• Overlap compute and data 
transfer phase

• Compute-bound kernels:

• Eliminate strict barriers

• Achieve up to 74% MAC unit 
utilization

• Memory-bound kernels:

• Performance restricted by the L2 
bandwidth

• Almost at the roofline with
97% DMA utilization

matmul

2dconv

dct

axpy

dotp

74% MAC unit 
utilization
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MatMul

MatMul

Accelerator for Attention — Transformer
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Multi-Head 
Attention

Feed
Forward

Add & Norm

Add & Norm

Multi-Head 
Attention Linear

Softmax

Linear Linear

Linear

Query Key Value

Attention

I

love

PULP

and

Encoder Block of Transformers Attention Mechanism
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Accelerator for Attention — MobileBERT
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Latency 
GEMM on Accelerator

74.7 ms

GEMM Add

Softmax NoNorm

60 %

28 %

9 %

6300 ms

GEMM Add

Softmax NoNorm

99 %

Latency
Everything on Cluster

84x

Arithmetic Operations

4.7 G

GEMM Add

Softmax NoNorm

99 %
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Accelerator for Attention — MobileBERT
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2.5x

Arithmetic Operations

4.7 G

GEMM Add

Softmax NoNorm

99 %

30 ms

GEMM Add

Softmax NoNorm

70 %

23 %

7 %

Latency 
GEMM & Attention on Accelerator

Softmax fused with GEMM

Latency 
GEMM on Accelerator

74.7 ms

GEMM Add

Softmax NoNorm

60 %

28 %

9 %
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Integer Transformer Accelerator — Dataflow
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Heterogeneous Accelerated Architecture
• Attention accelerator for Transformers!
• INT8 quantized networks
• Fused 𝑄 × 𝐾𝑇and A× 𝑉 computation
• Special Softmax unit!



Heterogeneous Accelerated Architecture

• Snitch multi-core cluster with an Attention 
accelerator (ITA)

• Communication via shared L1 memory

End-to-end Deployment with an 
Automated Flow using Deeploy

• Map DNN layers to kernel templates

• Solve tiling and memory allocation as one CP 
problem

• Requires a very minimal accelerator model

• Collaborative execution between cores and 
ITA.

Toward Attention-based TinyML
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Shared 128 KB L1 memory 

Snitch
RV32IMA ITA

TCDM interconnect

64 Nx64 64

W
id

e 
A

X
I –

5
1

2
b

 

Narrow AXI – 64b 

Snitch
RV32IMAXdma

DMA

Snitch
RV32IMA

8x
To SoC 
Level 
Data 

Memory

To SoC 
Interconnect

Wiese, Philip, et al. "Toward Attention-based TinyML: A 
Heterogeneous Accelerated Architecture and Automated 
Deployment Flow”, 2024

Snitch Cluster with Integer Transformer 
Accelerator (ITA)
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https://github.com/pulp-platform/ita
https://github.com/pulp-platform/deeploy
https://arxiv.org/abs/2408.02473


Toward Attention-based TinyML
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Step 1: Integrate Accelerator as HWPE Engine 

Hardware Processing Engines, https://hwpe-doc.readthedocs.io/
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https://hwpe-doc.readthedocs.io/


Toward Attention-based TinyML
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Hardware Processing Engines, https://hwpe-doc.readthedocs.io/

Step 2: Tune Interconnect Bandwidth

https://hwpe-doc.readthedocs.io/


Toward Attention-based TinyML
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Hardware Processing Engines, https://hwpe-doc.readthedocs.io/

Step 3: Develop Register Interface & Extract Accelerator Constraints

static inline void __attribute((always_inline)) ita_wait_job() {
while (snrt_hwpe_busy() != 0);

}

static inline void __attribute((always_inline)) ita_trigger() {
*(uint32_t *)(SNITCH_CLUSTER_ITA_HWPE_BASE_ADDR + 0x00) = 0;

}

https://hwpe-doc.readthedocs.io/


Toward Attention-based TinyML
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ONNX, Deeploy, https://github.com/pulp-platform/Deeploy

Step 4: Specify Workload

https://github.com/pulp-platform/Deeploy


Toward Attention-based TinyML
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Deeploy, https://github.com/pulp-platform/Deeploy

Step 5: Use Deeploy to Optimize and Schedule Operators

https://github.com/pulp-platform/Deeploy


Toward Attention-based TinyML
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Deeploy, https://github.com/pulp-platform/Deeploy

Step 6: Use Deeploy to Tile & Calculate Static Memory Allocation

qSequenceLengthVar = tilerModel.getTensorDimVar(tensorName = qBufferName, dimIdx = 1)
[…]

def addGeometricalConstraint(…)
tilerModel.addConstraint(qSequenceLengthVar == kSequenceLengthVar)
tilerModel.addConstraint(qSequenceLengthVar == outputSequenceLengthVar)
[…]

def addPolicyConstraint(…): 
tilerModel.divisiblePerfHint(qEmbeddingLengthVar, 64, prio = 1)
[…]

https://github.com/pulp-platform/Deeploy


Toward Attention-based TinyML
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Deeploy, https://github.com/pulp-platform/Deeploy

Step 7: Use Deeploy to Generate Code

class ItaMHSATemplate(NodeTemplate):
def computeTransientBuffersSize(…):

buffersSize = [(self.nameMangleTransientBuffer("qp", nodeRep), H * S * P), …]

ItaMHSATemplateStr = r"""
ita_soft_clear();
ita_acquire_job();

// Step 1
ita_write_regs(

(uint32_t)${q},
(uint32_t)${wq_weight},
(uint32_t)${wk_weight},

[…]
"""

https://github.com/pulp-platform/Deeploy


MemPool + Integer Transformer Accelerator (ITA)

Tightly coupled Acceleration Enginee

• Matmul & Softmax

• Reduce pressure on memory and interconnect

Collaborative Execution

• Cores prepare activations for the next attention head

• Final head accumulation computed in cores

• Nonlinearity in cores (PACE)
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MemPool + Integer Transformer Accelerator (ITA)

Integer Attention Accelerator

• 8-bit inputs, weights & outputs

• Builtin data marshaling & pipelined operation

• Streaming partial Softmax adding no additional latency

• Fused Q× KT, Softmax and A × V computation

• Support for hardware-aware Softmax
approximation in QuantLib

94

Dot Product
Units

Q K V Q.KT A.V Output

Softmax
DA EN

DI

𝑒𝑎𝑖−𝑎𝑚𝑎𝑥𝑛+1 = 𝑒𝑎𝑖−𝑎𝑚𝑎𝑥𝑛 ∙ 𝑒𝑎𝑚𝑎𝑥𝑛−𝑎𝑚𝑎𝑥𝑛+1
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Attention on ITA

95

Performance 
increase of 15x

Energy Efficiency 
increase of 36x

Area Efficiency 
increase of 74x

15x

8x

36x

20x

74x
40x
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Final words

• There is a lot of work to be done in efficient computer architectures

• These are exciting times, lot of new opportunities

• There is plenty to do also for embedded AI

• The large datacenter chip discussions are between few big players

• But AI/ML is not only in the datacenter, there is plenty to do on edge devices

• There is a 50 year history of computing architectures

• Important to understand what has already been done, and what the limits are

• Changing paradigms allow us to take a look at some older problems once again

• Acceleration requires matching of compute and memory resources

• What and how much can be stored and replenished determines much of performance

• Understanding data movement in and off chip to keep compute units occupied essential
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Our WWW page contains a wide collection of talks/papers
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Most of our talks: https://pulp-platform.org/conferences.html

And most of our papers: https://pulp-platform.org/publications.html


