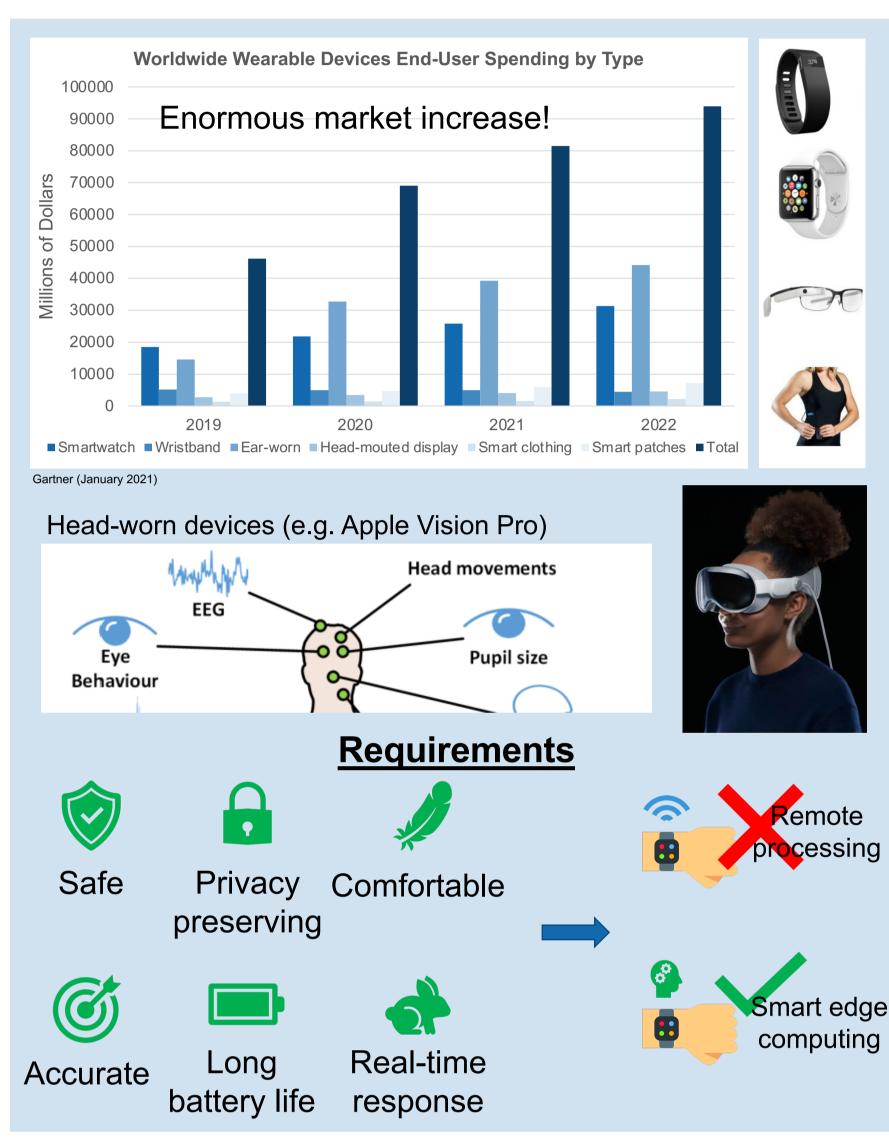
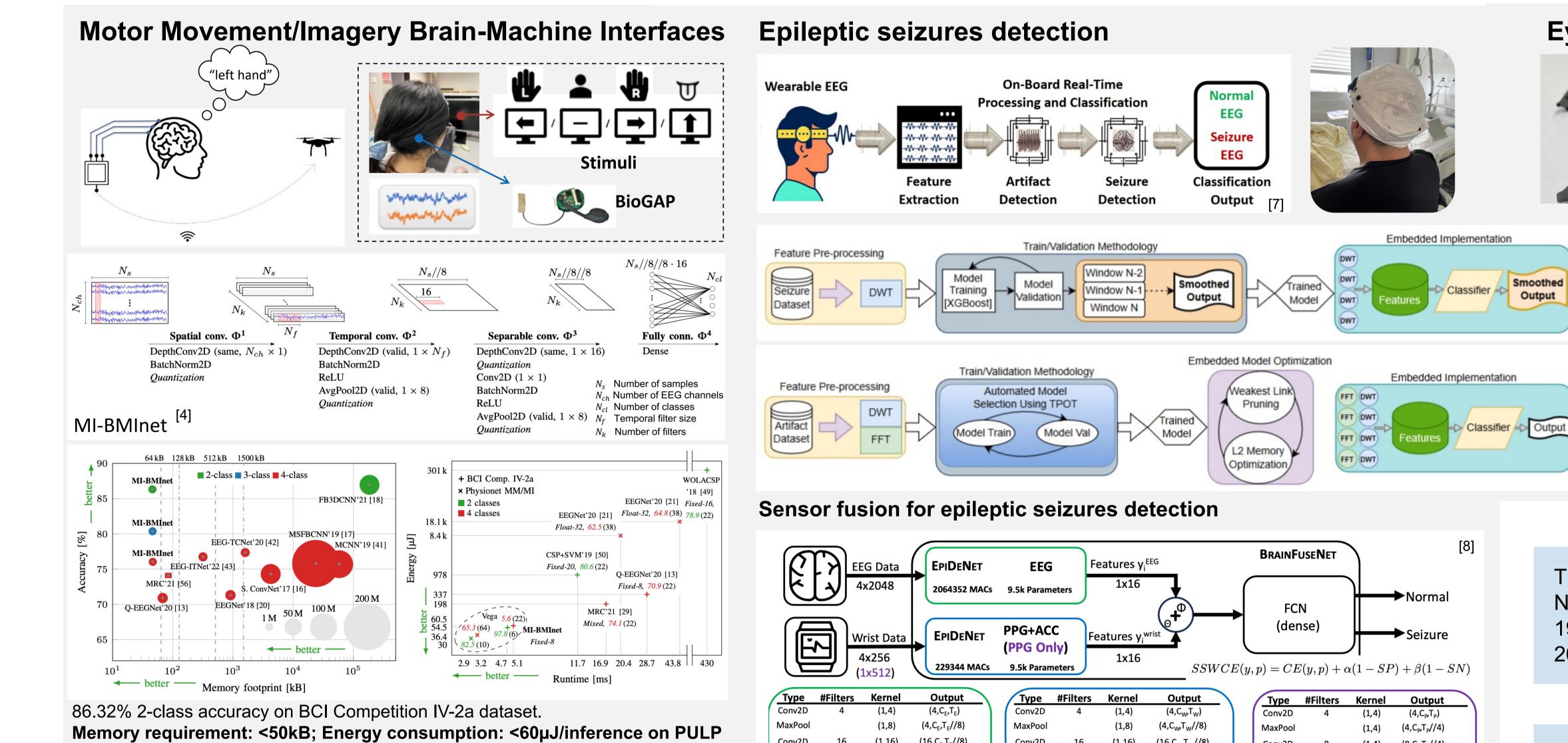

ETHZURICH


Near-Sensor Analytics and Machine Learning for Long-Term Wearable Biomedical Systems

X. Wang¹, T. M. Ingolfsson¹, L. Mei¹, C. Cioflan¹, S. Frey¹, V. Kartsch², S. Benatti², A. Cossettini¹, L. Benini^{1,2} ¹ Integrated Systems Laboratory, ETH Zurich, Switzerland ² DEI, University of Bologna, Bologna, Italy

BioWolf and BioGAP ExG Acquisition

Smart Wearable Devices

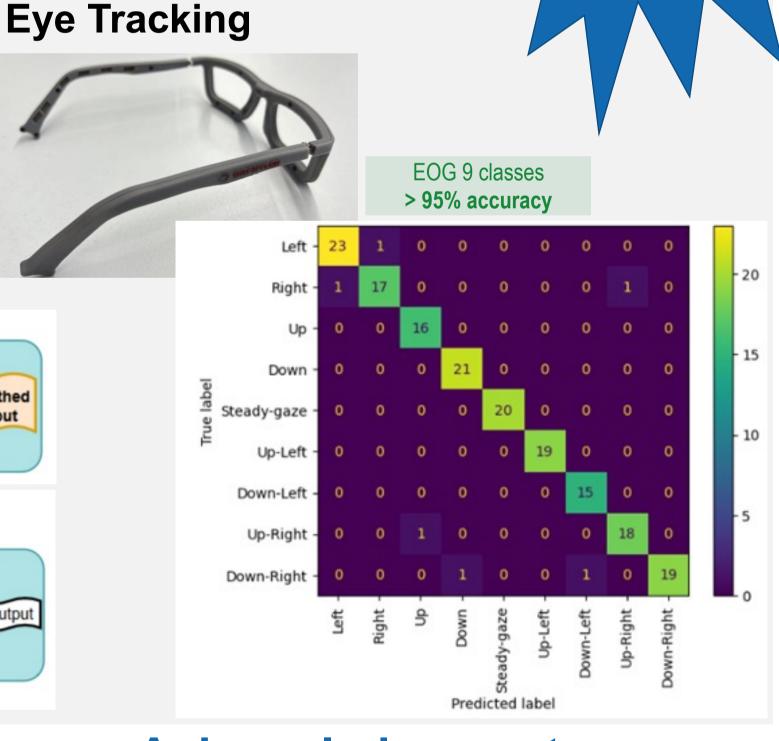

Proposed Systems

PCB implementation EEG PCB **Baseboard ADS1298** 12C Up to 8 ExG channels ADS1298 • 24-bit of resolution LSM6DSO EEG AFE GAP9 0.5 to 32 – Ksps. SoC IMU (-----i) SPI • PGA up to 12x. 12C • Dry active/Gel electrodes Electr nRF52811 MAX20303 compatible. **Usage example (Patch-like encase)** BLE SoC PMIC MAX86150 PPG AFE nRF52832 ARM Cortex-M4. **PPG PCB** CR1254 64 MHz. Host PC OFAAR Bluetooth 5 capable. Battery nRF52840 NFC-A. Dongle • 512/64 KB Flash/RAM. [3] In-ear PULP SoC _____ DC/DC L2 BANK O L2 BANK 1 e.g. Mr. Wolf: LDO Flex-rigid PCB to • 8 RISC-V cluster processors. L2 BANK 2 L2 BANK Custom **EOG** interface Voltage range (0.8V-1.1V). + FLLs SoC Domain and EEG electrodes • 40nm LP CMOS. electrodes L2 BANK 4 64kB/512kB L1/L2 memory. **BioGAP** for acquisition and L2 BANK 6 L2 BANK Peak Perf → 1GFLOP/s process En.Eff. → 15MMAC/s/mW and 9MFMAC/s/mW **Cluster Domain** Headband **ExG-glasses** Miniaturized and non-**Developed Applications** stigmatizing!

Smoothed

Output

Conv2D

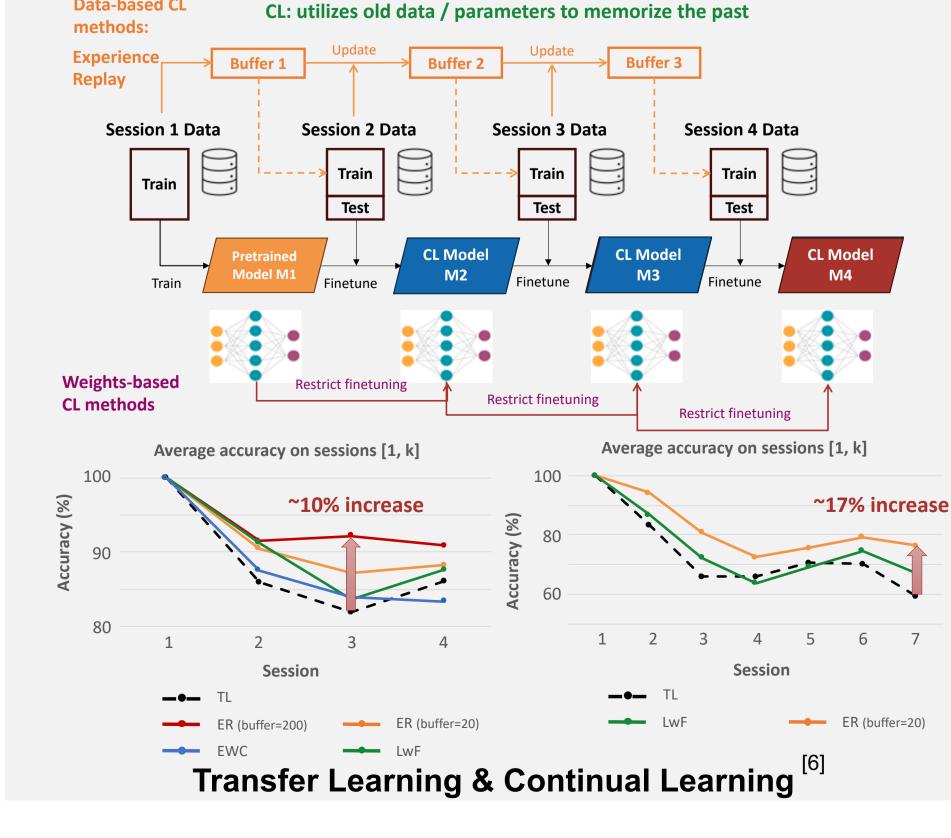

MaxPoo

Conv2D

MaxPoo

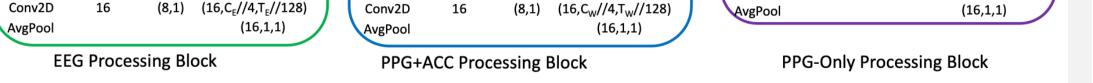
Conv2D

MaxPoo



Acknowledgements

The authors acknowledge support from the Swiss National Science Foundation under the grant n. 193813 (PEDESITE project) and the grant n. 207913 (TinyTrainer project).


References

- 1. Kartsch V, et al., "BioWolf: A Sub-10-mW 8-Channel Advanced Brain-Computer Interface Platform With a Nine-Core Processor and BLE Connectivity," IEEE Trans Biomed Circuits Syst., 2019.
- 2. X. Wang, et al., "Enhancing Performance, Calibration Time and

Vega; Runtime: <5ms/inference.

Data-based CL

(1,4)

(1,8)

(1,4)

(16,1)

(4,1)

(16,C_w,T_w//8)

(16,C_w,T_w//32)

(16,C_w,T_w//32)

(16,C_w,T_w//128)

(16,C_w,T_w//128)

(16,C_w//4,T_w//128)

Conv2D

MaxPool

Conv2D

MaxPoo

Conv2D

Conv2D

(8,C_P,T_P//4)

 $(16, C_P, T_P//16)$

 $(16, C_{p}, T_{p}//16)$

(16,C_P,T_P//64)

(16,C_P,T_P//64)

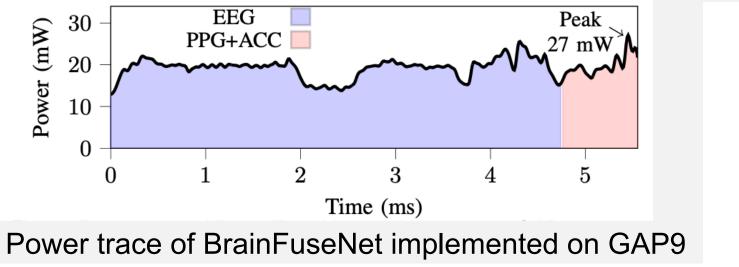
(16,C_P,T_P//64)

(1,4)

(1,4)

(1,8)

(1,16)


Demo videos

https://efcl.ethz.ch/Media/p

roject-videos---demos.html

Seizure detection results on the PEDESITE dataset

	EEG CE			EEG (smooth) SSWCE			EEG+PPG (smooth) SSWCE			EEG+PPG+ACC (smooth) SSWCE		
Patient	Sens [%]	Spec [%]	FP/h	Sens [%]	Spec [%]	FP/h	Sens [%]	Spec [%]	FP/h	Sens [%]	Spec [%]	FP/h
P1	9.70	99.52	2.16	25.20	99.62	1.71	22.90	99.76	1.08	-	-	-
P2	57.00	100	0	59.44	100	0	59.10	100	0	46.31	99.98	0.11
P3	68.20	99.48	2.34	65.45	99.67	1.48	69.95	99.56	1.98	60.07	99.95	0.24
P4	73.40	99.72	1.26	77.86	99.78	0.99	82.29	99.82	0.81	77.95	99.85	0.68
P5	91.10	99.82	0.81	92.50	100	0	91.24	100	0	91.06	100	0
P6	48.70	96.90	14.0	43.49	99.36	2.88	41.81	99.50	2.15	46.03	100	0
Average	58.02	99.24	3.43	60.66	99.74	1.18	61.22	99.77	1.00	64.28	99.96	0.21

 $(16, C_{E}, T_{E}//8)$

 $(16, C_E, T_E//32)$

 $(16, C_E, T_E//32)$

 $(16, C_E, T_E / / 128)$

 $(16, C_E, T_E / / 128)$

(16,C_E//4,T_E//128)

(4,1)

Conv2D

MaxPool

Conv2D

MaxPool

Conv2D

MaxPool

- Efficiency in Brain-Machine Interfaces through Transfer Learning and Wearable EEG Technology," IEEE BioCAS, 2023
- 3. M. Guermandi, et al., "A Wireless System for EEG Acquisition and Processing in an Earbud Form Factor with 600 Hours Battery Lifetime," International Conference of the IEEE Engineering in Medicine & Biology Society, 2022.
- 4. X. Wang, et al., "MI-BMInet: An Efficient Convolutional Neural Network for Motor Imagery Brain–Machine Interfaces With EEG Channel Selection," in IEEE Sensors Journal, vol. 24, no. 6, pp. 8835-8847, March 15, 2024, doi: 10.1109/JSEN.2024.3353146.
- 5. A. Pullini, et al., "Mr. Wolf: An Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT Edge Processing," in IEEE Journal of Solid-State Circuits, 2019.
- 6. L. Mei, "On-Device Continual Learning for Bio-Signal Classification", Master thesis at ETH Zurich, 2024
- 7. T.M. Ingolfsson, et al., "Minimizing artifact-induced false-alarms for seizure detection in wearable EEG devices with gradientboosted tree classifiers". Sci Rep14, 2980 (2024).
- T.M. Ingolfsson, et al., "Enhancing Wearable Seizure Detection 8. through EEG-PPG-accelerometer Sensor Fusion and Efficient Edge Deployment", 2024. Under review.